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A B S T R A C T

This paper presents a real-estate application of the bunching methodology widely used in other areas of applied
microeconomics. The focus is on regulated building heights in New York City, where developers can exceed
a parcel’s regulated height by incurring additional costs. Using the bunching methodology, we estimate the
magnitude of these extra costs, with the results showing a modest increase in the marginal cost of floor space
beyond the regulated building height. We use these estimates to predict the additional floor space that would
be created by complete removal of building-height regulation in NYC. While this last exercise is circumscribed
by our focus on a limited number of zoning categories, the results suggest that New York could secure notably
more housing through lighter height regulation.
1. Introduction

This paper presents a rare application in the real-estate context
of the bunching methodology widely used in other areas of applied
microeconomics. The application is building-height regulation in New
York City, where several costly actions allow a developer to exceed the
regulated height for his parcel. The paper aims to use the observed
bunching patterns around regulated heights to estimate the marginal-
cost premium for exceeding those heights, thus capturing the size of
the cost-function kink faced by developers. Our approach reverses the
usual application of the bunching methodology, under which the kink
size is known and the goal is to estimate a behavioral parameter. Our
behavioral parameter (the exponent in a housing production function)
has been reliably estimated, and we use its value to identify the
unknown size of the cost-function kink. We also use our estimates to
predict the increase in floor space in our sample that would result from
eliminating height regulation.

The bunching methodology introduced by Saez (2010), which we
adopt in its original form, has been widely used in a variety of applica-
tions. In these applications, consumers or firms bunch at a kink point of
some function that enters their optimization problem, and the extent of
the bunching can be used to estimate the value of an unknown parame-
ter of interest. Saez (2010), for example, uses the extent of bunching at
an income-tax schedule’s kink point, where the slope changes discon-
tinuously, to estimate the elasticity of labor supply, and Chetty et al.
(2011) carry out a similar exercise. As explained in the recent surveys
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by Kleven (2016) and Bertanha et al. (2023), the method has also
been applied in many other taxation contexts as well as in research
on financial markets, health care, environmental regulation, education
and energy demand. In addition to surveying applications, Bertanha
et al. (2023) also discuss the most recent econometric advancements
in bunching methodologies.

In most studies, the size of the kink faced by optimizing agents
is known (the increase in a marginal tax rate, for example), while
the behavioral parameter that influences the extent of bunching is the
unknown quantity. In Saez (2010), this parameter is a labor-supply
elasticity. Alternatively, however, it is possible to use Saez’s method to
estimate the unknown size of a kink faced by optimizers, provided that
the magnitude of the relevant behavioral parameter is known. A fellow
researcher fittingly described this approach as ‘‘reverse engineering’’.2
The present paper carries out such an exercise, with a focus on building-
height bunching at the regulated heights of residential buildings, using
data from New York City. As explained further below, a developer can
exceed the regulated building height by incurring extra costs, which
lead to a kink in the marginal cost of floor space. Using the bunching
pattern around the regulated height along with an outside estimate of
a housing production-function parameter, we can estimate the size of
this marginal-cost kink.

In New York and most other US cities, heights are regulated via
limits on a building’s floor-area ratio, or FAR, which equals the square
feet of floor space in the building divided by the lot size. If the building
vailable online 5 July 2024
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fully covers the entire lot, the FAR is simply equal to the number of
floors. FAR limits vary across parcels, being low in some locations
and high in others, depending on the decisions of the local planning
authority.

In New York, however, several costly options allow developers to
build beyond FAR, the parcel’s FAR limit. For example, under the
rivately Owned Public Spaces (POPS) program, a developer is granted
maximum FAR above FAR in return for devoting a portion of the

lot to open space with public access.3 Because some of the developer’s
land goes unused in the production of floor space, reliance on the
POPS program raises the cost of that space. Alternatively, a developer
can purchase ‘‘air rights’’ from a nearby existing building whose FAR
value is below its limit. When this building is contiguous to the de-
veloper’s lot, air rights are acquired through a ‘‘zoning lot merger’’,
which allows the unused FAR to be transferred to the new building,
with compensation to the existing building’s owner. Air rights from a
noncontiguous property can be bought under a different mechanism.
Weinberger (2023) offers a fuller explanation of these rules while also
stating that the cost of air rights in NYC ranges between $100 and
$300 per square foot of floor space. Another path to a higher FAR is
available for parcels adjacent to subway stops, where expenditures on
station improvements can raise the allowed FAR by 20%.4 In addition,
developers can get FAR bonuses though NYC’s inclusionary housing
program.5

Thus, developers can build above FAR, but at a cost, which leads
to a kink at FAR in the marginal cost of floor space. This conclusion
ollows because the extra cost depends on the extent to which FAR is

exceeded, which is clearest in the case of air rights. Since we observe
a parcel’s FAR, the location of the kink on the marginal-cost schedule
s known. However, its size is unknown. The goal of the paper is to
stimate the size of this cost kink using the bunching methodology.
o do so, we must impose a value for the capital exponent in a
obb–Douglas housing production function, which plays the role of
he unknown behavioral parameter in our model. A recent and reliable
xponent estimate is drawn from Duranton et al. (2021), who estimate
he housing production function using French data.6

Using data for 2017, we proceed by focusing only on NYC parcels
ontaining residential buildings constructed since 2000, so that ob-
erved FAR values have been set relatively recently rather than decades
arlier. We divide this collection of parcels into different FAR groups,

of which five have enough observations (at least 1000) to be usable
for our purposes. For example, one group has FAR= 2.0, while another
has FAR= 0.9. Then, within each FAR group, we use the bunching

ethodology to estimate the increase in the marginal cost of floor
pace above FAR, expressed as a proportion of the cost below FAR. We

estimate the standard error of our marginal-cost penalty, and thus its

3 See this NY Department of City Planning website for more infor-
ation: https://www.nyc.gov/site/planning/plans/pops/pops.page. Evidently,

he amount of additional FAR is negotiated with the city.
4 See https://zr.planning.nyc.gov/article-xi/chapter-5/115-21.
5 See https://www.nyc.gov/site/planning/zoning/districts-tools/

nclusionary-housing.page.
6 Garicano et al. (2016) carry out an exercise somewhat similar to ours in

heir study of the French labor market. French firms are subject to additional
egulations when their employment exceeds 50 workers. As the impact of
hese regulations on firm employment is hard to quantify, the paper estimates
he tax equivalent of the regulations by exploiting the bunching pattern of
irms at the threshold. Like us, they rely on external estimates of production
arameters to generate their tax-function estimates. Rather than using Saez’s
2010) methodology or other bunching estimating techniques that rely on

few parametric assumptions, the paper includes a normally distributed
easurement error on observed employment. This approach allows estimation

f the parameters of the model using maximum likelihood. An advantage of
heir method is that they can use the entire distribution of employment to
dentify the relevant parameters.
2

o

95% confidence interval, by the bootstrap method, using 10,000 draws
with replacement.

Our results show that the marginal-cost kinks in the different FAR
groups are relatively modest, ranging from around 3% to 10% in size.
This conclusion can be anticipated from the bunching patterns seen
in the histograms presented below, which show considerable building-
height mass above the regulated height in each FAR group. This mass
would only exist if costs of exceeding FAR are not substantial, which
is what the estimates generated by the bunching methodology indeed
show.

Application of this methodology in the real-estate context is rela-
tively rare. The only other published studies of real-estate bunching of
which we are aware are Kopczuk and Munroe (2015) and Slemrod et al.
(2017), who study transfer taxes. Since transfer taxes only apply above
a large sales-price threshold, the taxes generate a ‘‘notch’’, a discontin-
uous jump in the tax burden, rather than a continuous kink. Kleven and
Waseem (2013) developed an estimation method for notches analogous
to Saez’s kink methodology. Like Kopczuk and Munroe (2015) and
Slemrod et al. (2017), applications in the research areas mentioned
above often involve notches rather than kinks. In another real-estate
paper, as yet unpublished, Levy (2024) studies bunching at regulated
housing-quality thresholds. It should be noted that our different focus
on building heights and their regulation follows a growing literature on
this topic in urban economics.7

Glaeser et al. (2005) and Brueckner and Singh (2020) study the
stringency of land-use regulation in NYC and other cities. The latter pa-
per’s methodology allows the free-market FAR to be estimated, showing
that NYC’s regulated FAR values lie well below it. This result appears
to confirm the allegations of many observers (including Glaeser and his
coauthors) that, despite its high density, New York is not dense enough,
with more housing and thus taller buildings needed. Our results allow
us to advance this debate by computing the extra floor space that would
be generated by removing the FAR limit in any of our FAR groups.8

This exercise is carried out in Section 5 of the paper, drawing on
the background provided by earlier sections. Section 2 shows how the
bunching methodology can be applied to the building-height case. Sec-
tion 3 describes our data sources, and Section 4 presents the estimation
results. Section 6 offers conclusions.

2. Saez’s analytics adapted to building heights

Saez’s (2010) bunching methodology can be adapted to a devel-
oper’s choice of building height. This section explains the adaptation.

2.1. Housing production

To start, we depict the production of housing floor space, relying on
the standard approach in urban models. Let 𝑄 denote output of floor
space, which is produced with inputs of capital 𝐾 (building materials)
and land 𝓁 using the CRS production function 𝐻(𝐾,𝓁). Floor space per
acre of land, denoted 𝐹 , is given by 𝐹 = 𝐻(𝐾,𝓁)∕𝓁 = 𝐻(𝐾∕𝓁, 1) =
(𝑆, 1) ≡ 𝑓 (𝑆), where 𝑆 = 𝐾∕𝓁 is capital per acre. The developer’s

rofit per acre of land, exclusive of land cost, is then 𝑝𝑓 (𝑆) −𝑆, where
is the rental price per square foot floor space and the price of capital is
ormalized to 1. As usual in urban models, developers are price-takers,

7 See Bertaud and Brueckner (2005), Brueckner and Sridhar (2012), Brueck-
er and Singh (2020), Ahlfeldt and McMillen (2018), Ahlfeldt and Barr (2022)
nd Barr and Jedwab (2023), among others.

8 Application of our methods to other cities might be interesting, but before
oing so, researchers must learn whether any such city offers developers ways

f exceeding a regulated FAR limit, as does NYC.

https://www.nyc.gov/site/planning/plans/pops/pops.page
https://zr.planning.nyc.gov/article-xi/chapter-5/115-21
https://www.nyc.gov/site/planning/zoning/districts-tools/inclusionary-housing.page
https://www.nyc.gov/site/planning/zoning/districts-tools/inclusionary-housing.page
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treating 𝑝 as parametric.9 The first-order condition for choice of 𝑆 is
𝑓 ′(𝑆) = 1 (note that 𝑓 ′′ < 0).10

Floor space per acre, 𝐹 , is commonly known as FAR (the floor-area
atio), and the developer can be depicted as choosing it rather than 𝑆,
hich is more convenient for our purposes. Making a change of variable

rom 𝑆 to 𝐹 yields 𝑆 = 𝑓−1(𝐹 ). The developer’s capital cost per acre can
hen be written 𝑆 = 𝑓−1(𝐹 ) ≡ 𝐶(𝐹 ). Profit per acre is then 𝑝𝐹 − 𝐶(𝐹 ),
nd the first-order condition is 𝑝 = 𝐶 ′(𝐹 ). The two approaches using

and 𝐹 are, of course, equivalent. If 𝐻 takes a Cobb–Douglas form
ith capital exponent 𝜌 < 1, then 𝑓 (𝑆) is proportional to 𝑆𝜌 and 𝐶(𝐹 )

s proportional to 𝐹 1∕𝜌 ≡ 𝐹 𝛾 , where 𝛾 = 1∕𝜌 > 1.
For notational simplicity, let 𝐹 instead of FAR denote the regulated

AR. Then suppose that the marginal cost 𝐶 ′(𝐹 ) is larger above 𝐹 than
below it, as would be the case if air rights need to be purchased to set
𝐹 above 𝐹 . To capture this behavior, let 𝐶(𝐹 ) include a multiplicative
factor that equals 𝛼∕𝛾 below 𝐹 and (𝛼 + 𝛽)∕𝛾 above it, as follows:

𝐶(𝐹 ) =

{

𝛼𝐹 𝛾∕𝛾 if 𝐹 ≤ 𝐹
(𝛼 + 𝛽)𝐹 𝛾∕𝛾 − 𝛽𝐹

𝛾
∕𝛾 if 𝐹 > 𝐹 .

(1)

Note that the 𝛽𝐹
𝛾
∕𝛾 term in the second line of (1) ensures that 𝐶(𝐹 ) is

ontinuous at 𝐹 . Using (1), the previous first-order condition 𝑝 = 𝐶 ′(𝐹 )
or 𝐹 can be written as

=

{

𝛼𝐹 𝜆 if 𝐹 ≤ 𝐹
(𝛼 + 𝛽)𝐹 𝜆 if 𝐹 > 𝐹 , where 𝜆 ≡ 𝛾 − 1 = 1∕𝜌 − 1 > 0.

(2)

Solving (2) for 𝐹 gives

𝐹 =

{

(𝑝∕𝛼)1∕𝜆 if 𝑝 ≤ 𝛼𝐹
𝜆
≡ 𝑝∗

(𝑝∕(𝛼 + 𝛽))1∕𝜆 if 𝑝 > (𝛼 + 𝛽)𝐹
𝜆
≡ 𝑝∗∗.

(3)

While (2) and (3) apply when the developer purchases air rights to set
𝐹 above 𝐹 , the Appendix A shows that the same first-order conditions
pply when the developer secures a higher FAR limit by creating public
pen space.

.2. Bunching

Inspection of (2) and (3) shows that the optimal 𝐹 equals 𝐹 when
𝑝 = 𝛼𝐹

𝜆
≡ 𝑝∗ and also when 𝑝 = (𝛼 + 𝛽)𝐹

𝜆
≡ 𝑝∗∗. For 𝑝 values in

he range (𝑝∗, 𝑝∗∗), the optimal 𝐹 also equals 𝐹 , although neither of the
angency conditions in (2) and (3) is satisfied. In this case, for a range
f 𝑝 values, the highest profit is reached at the kink in the 𝐶 function

without a tangency occurring, leading to the bunching of optimal 𝐹
values at 𝐹 . Fig. 1 provides an illustration, with the two dotted lines in
the figure, having slopes 𝑝∗ and 𝑝∗∗, being tangent to the two separate
ortions of 𝐶(𝐹 ) at the kink. A line with an intermediate slope would
ouch the kink without a tangency.

We consider a large group of land parcels sharing a common 𝐹 , but
he price 𝑝 is assumed to differ across the parcels in a manner described
y the density function 𝑡(𝑝). Price differences across parcels would

be caused by differences in neighborhood characteristics, including
access to subway stations and parks or other amenities. While large

9 This assumption could be questioned in a setting like NYC, where the
arge supply impact from construction of a skyscraper may affect 𝑝 in a
eighborhood. However, as will be seen below, buildings in our sample are
mall enough to mostly preclude such an effect. Average heights are in the 2-3
tory range, where reverse causation running from 𝑆 or 𝐹 to 𝑝 is less likely

than in the case of skyscraper construction.
10 While the function 𝑓 is assumed to be smooth, a recent study by Eriksen

and Orlando (2022) documents nonsmooth marginal costs at the fourth and
eighth floors in tall buildings. Addressing such jumps would complicate the
present analysis, but (as seen below) our sample buildings tend to have fewer
3

than 4 floors, which is below the problematic range.
Fig. 1. Kink in 𝐶(𝐹 ).

ifferences in 𝑝 across neighborhoods would presumably lead the city
o set different 𝐹 values, contrary to the assumption of a common,

fixed 𝐹 , smaller variations in 𝑝 (captured by 𝑡(𝑝)) are likely to occur
ith a given 𝐹 zone.11 Optimal values of 𝐹 thus differ across parcels
epending on the relevant 𝑝 values. Since 𝐹 is the choice variable, we
eed to derive the density of 𝐹 over the relevant ranges.12 With 𝑝 = 𝛼𝐹 𝜆

olding below 𝐹 , the density of 𝐹 in this range can be derived by using
the change-of-variable formula on 𝑝’s density 𝑡(𝑝). Doing so, the density
of 𝐹 for 𝐹 < 𝐹 is given by

𝑡(𝛼𝐹 𝜆)𝛼𝜆𝐹 𝜆−1 ≡ ℎ0(𝐹 ), (4)

here ℎ0 denotes 𝐹 ’s density in this range. Note that 𝑝 as a function
f 𝐹 is substituted in 𝑡, with result multiplied by the derivative of this
elationship. The resulting transformation changes the density’s scale
n the horizontal axis as well as its height.

Similarly, to find the density of 𝐹 for 𝐹 ≥ 𝐹 , 𝑝 = (𝛼 + 𝛽)𝐹
𝜆

is
substituted into 𝑡(𝑝), yielding

𝑡((𝛼 + 𝛽)𝐹 𝜆)(𝛼 + 𝛽)𝜆𝐹 𝜆−1 ≡ ℎ1(𝐹 ), (5)

here ℎ1 denotes 𝐹 ’s density in this range.
To relate all this information to the extent of bunching at 𝐹 , recall

hat developers facing 𝑝 values in the interval [𝑝∗, 𝑝∗∗] = [𝛼𝐹
𝜆
, (𝛼+𝛽)𝐹

𝜆
]

bunch at 𝐹 . Intuitively, for a given 𝜆, the range of 𝑝 values leading to
bunching, and thus the number of developers who bunch, is larger the
greater is the ratio (𝛼 + 𝛽)∕𝛼 and thus the larger is the marginal-cost
penalty for exceeding 𝐹 .

We can derive the size of this group of bunching developers using
the density ℎ0(𝐹 ), which applies in the range below 𝐹 . To do so,
suppose for a moment that the marginal-cost kink at 𝐹 did not exist,
with the density ℎ0(𝐹 ) applying for all 𝐹 values. To use this density,
note that the developer with 𝑝 = 𝑝∗∗ = (𝛼 + 𝛽)𝐹

𝜆
facing the marginal-

ost factor 𝛼 would choose 𝐹 = [(𝛼 + 𝛽)∕𝛼]1∕𝜆𝐹 , as can be seen from
the first line of (3). Therefore, the number of developers in the [𝑝∗, 𝑝∗∗]
interval would be the number of developers choosing 𝐹 between 𝐹 and

11 Note that idiosyncratic variation in 𝑝 across neighborhoods sharing a
common 𝐹 is not inconsistent with the assumption of price-taking behavior by
developers. These variations serve to equalize resident utilities in the present
of exogenous amenity variation in a way that is beyond the influence of
developers.

12 Note that in our model, the price 𝑝 is analogous to the unobserved ability
𝑛 in Saez (2010), while 𝐹 is analogous to Saez’s before-tax income 𝑧, the

worker’s choice variable.
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𝐹 = ((𝛼 + 𝛽)∕𝛼)1∕𝜆𝐹 in the absence of the marginal-cost kink. Let the
last expression be written as 𝐹 + 𝛥𝐹 , where

𝐹 =

[

(

(𝛼 + 𝛽)
𝛼

)1∕𝜆
− 1

]

𝐹 . (6)

hen, the number of bunchers 𝐵 is equal to the integral of the density
0(𝐹 ), which applies in the absence of the kink, between these two
alues:

= ∫

𝐹+𝛥𝐹

𝐹
ℎ0(𝑧)𝑑𝑧. (7)

his integral can be approximated by the area of a trapezoid with its
orners on ℎ0(𝐹 ) at the limits of integration, yielding

= 𝛥𝐹
ℎ0(𝐹 ) + ℎ0(𝐹 + 𝛥𝐹 )

2
. (8)

The problem, though, in operationalizing (8) is that we do not
observe ℎ0(𝐹 + 𝛥𝐹 ), given that ℎ0 in the presence of the marginal-
cost kink only applies up to 𝐹 and not above it. But we can use the
relationship between ℎ0 and ℎ1 implied by (4) and (5) to replace ℎ0(𝐹 +
𝛥𝐹 ) by expression involving the (observable) density ℎ1, circumventing
his obstacle. As shown in the Appendix A, doing so yields

0(𝐹 + 𝛥𝐹 ) =
(

𝛼 + 𝛽
𝛼

)−1∕𝜆
ℎ1(𝐹 ). (9)

Substituting (9) into (8), while recalling the definition of 𝛥𝐹 in (6),
7) can be written as13

= 𝛥𝐹
ℎ0(𝐹 ) + ((𝛼 + 𝛽)∕𝛼)−1∕𝜆 ℎ1(𝐹 )

2

= (𝜃 − 1)𝐹
ℎ0(𝐹 ) + (1∕𝜃) ℎ1(𝐹 )

2
, (10)

here

≡
(

𝛼 + 𝛽
𝛼

)1∕𝜆
. (11)

Note that 𝜃 equals the ratio of the marginal-cost parameters just above
and below 𝐶(𝐹 )’s kink, which is then raised to a power equal to the
price elasticity of 𝐹 , equal to 1∕𝜆 from above.

Since 𝐵, ℎ0(𝐹 ), and ℎ1(𝐹 ) can be measured in the data, (9) can
e used to solve for 𝜃. With a 𝜃 estimate, denoted 𝜃, in hand, the
arginal-cost ratio (𝛼 + 𝛽)∕𝛼 can be estimated via

̂𝛼 + 𝛽)∕𝛼 = 𝜃 𝜆, (12)

sing an independent value of 𝜆.
As explained in Saez (2010), the elements in (10) can be generated

y creating three FAR intervals around 𝐹 , defined by a width factor
. One interval is centered at 𝐹 , consisting of observed FAR values
atisfying 𝐹 ∈ [𝐹 − 𝛿, 𝐹 + 𝛿]. Two additional intervals lie just below

and just above this interval, consisting of FAR values satisfying 𝐹 ∈
[𝐹 −2𝛿, 𝐹 − 𝛿) and 𝐹 ∈ (𝐹 + 𝛿, 𝐹 +2𝛿]. These intervals yield an estimate
f the extent of bunching, captured by the excess mass in the middle
nterval relative to the masses in the two outer intervals (mass being
he number of 𝐹 observations). In addition, the latter masses allow
stimates of ℎ0(𝐹 ) and ℎ1(𝐹 ).

Specifically, let 𝑁 denote the number of FAR observations in the
entral interval, 𝐻− denote the number of observations in the lower

outer interval, and 𝐻+ denote the number of observations in the upper
outer interval. Then the estimated magnitude of bunching equals 𝐵 =
𝑁 −𝐻− −𝐻+. The value of ℎ0(𝐹 ) in (10) is estimated by the average
eight of the density in the range (𝐹−2𝛿, 𝐹−𝛿), or ℎ− = 𝐻−∕𝛿. Similarly,

13 Eq. (10) corresponds to (5) in Saez (2010). In Saez’s case, 𝜃 = [(1−𝑡0)∕(1−
1)]𝑒, where 𝑡0 and 𝑡1 are the income-tax rates below and above the kink in the
et-of-tax earnings schedule and 𝑒 is the compensated elasticity of earnings
ith respect to 1 minus the tax rate.
4

Fig. 2. Bunching area.

the value of ℎ1(𝐹 ) is estimated by average height of the density in the
range (𝐹 + 𝛿, 𝐹 + 2𝛿), or ℎ+ = 𝐻+∕𝛿. In both cases, the average density
eight equals the number of FAR observations in each interval divided
y its width. This setup is illustrated in Fig. 2, which pertains to parcels
ith FAR = 0.6 (see below). Note that the distance between the dashed

vertical lines equals 𝛿. The areas 𝐻− and 𝐻+ are not explicitly labeled
in the figure, but the density heights ℎ− and ℎ+ are labeled.

The estimated values, as seen in the figure, are substituted into (10),
and the equation is then solved to yield 𝜃, the estimate of 𝜃. Note that
after multiplying through by 𝜃, (10) becomes a quadratic equation in
𝜃, which can be solved by the quadratic formula. Given 𝜃, we use the
existing estimate of 𝜆 from Duranton et al. (2021) to yield 𝜃 𝜆, the
estimate of the marginal-cost ratio from (12). That paper provides a
recent and reliable estimate of the parameters of the Cobb–Douglas
housing production function based on French data.14 Their estimate of
the capital exponent for Paris, a large city comparable to NYC, is 0.54.
Using the second line of (2), this exponent translates into a 𝜆 value of
(1∕0.54) − 1 = 0.85.

Bootstrapping, based on repeated sampling with replacement from
the data set (using 10,000 draws), generates a mean 𝜃 value along with
a standard error and confidence interval. In addition, our 𝜃 estimate,
and hence the estimate of (𝛼 + 𝛽)∕𝛼, obviously depend on the value
of the interval parameter 𝛿, and this dependence can be appraised via
sensitivity analysis.

3. Data

The Primary Land Use Tax Lot Output (PLUTO) dataset (Release
17v1.1) provided by the New York City Department of City Planning
is used as our analysis dataset. The sample year is 2017. PLUTO
contains information on the physical dimensions of the tax lot and
the building(s) that sit on the lot, the economic uses of the tax lot,
the year when the building was built along with the years of the last
major alterations, the zoning designation(s) that pertain to the lot, and
the assessed value of the property and land, amongst other fields. The
initial dataset has 859,223 observations. The geography of New York
City is spread across the five boroughs: Brooklyn (32.29% of tax lots),
Bronx (10.46%), Manhattan (5%), Queens (37.77%), and Staten Island
(14.46%).

We apply several filters to the data to ensure a clean focus. First,
we drop commercially zoned and industrially zoned buildings from
our sample, focusing only on residential buildings. Next, we drop any

14 While the paper uses data on single-family houses rather than taller
buildings to estimate the production function, the estimates appear to be the
most reliable ones available.
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Fig. 3. FAR distribution for 𝐹 = 2.0.

observation that has more than one zoning designation, is zoned as a
special purpose district, a historical district, a limited-height district,
or where no zoning designation or year built is indicated. We also drop
any lot that does not contain a single building. These filters exclude
428,142 observations, or 49.82% of the initial sample. We also filter
out zoning designations for which we either do not have adequate
information on height restrictions, or whose rules are governed by
‘‘height-factor’’ zoning regulations, which confound our analysis.15

We then generate values for FAR limits using the PLUTO’s ‘‘Zoning
Data Tables’’, keeping only FAR values that pertain to at least 1000
tax lots.16 This final filter results in five subsamples with FAR limits
of 0.5, 0.6, 0.9, 1.25, and 2.0.17 The final analysis dataset consists of
23,369 properties, or roughly 2.72% of the initial sample. Of these
properties, 2656 (11.37%) are in the Bronx, 4580 (19.6%) are in
Brooklyn, 9247 (39.56%) are in Queens, and 6885 (29.50%) are in
Staten Island. Only a single parcel lies in Manhattan. Compared to
the initial sample, our analysis sample is more heavily weighted to
the boroughs of Staten Island, the Bronx, and Queens, and much less
representative of Brooklyn and especially Manhattan. See Brueckner
et al. (2024) for the online location of our data.

15 Height-factor zoning regulations confound our analysis, since the devel-
oper can increase the FAR limit by providing more open space, building a
taller skinnier building, as under the POPS program. The problem is that FAR
varies with open space according to a complicated formula, with no regular
FAR limit stated. To further confound the analysis of these properties, in 1987
‘‘The Quality Housing Program’’ (QHP) was initiated, and developers were to
choose between height-factor zoning and the QHP, which imposed a number
of design restrictions while allowing for wider buildings more in line with the
historic character of the neighborhoods. These filters remove an additional
65,680 observations, or 7.64% of the initial sample.

16 As explained in detail in Peng (2023), NYC instituted a land-use reform
over the 2002–2013 period that raised regulated FAR values in many locations,
with an average increase of 23% (from an average value of 1.6 to 2.34,
although values for some parcels actually decreased). Since FAR values were
changing over this period for many parcels, we assigned each parcel in our
sample the FAR prevailing in its construction year (2000 or later). Because
of data limitations, however, parcels with construction occurring in 2001–
2002 were assigned the 2000 FAR. Assigning all parcels their 2017 FAR values
could have introduced measurement error if the reform raised FAR after the
construction year, making the recorded FAR exceed the one the developer
faced.

17 Note that the price density 𝑡(𝑝) from the theoretical analysis is likely to
differ across these FAR groups, implicitly depending on 𝐹 .
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Fig. 4. FAR distribution for 𝐹 = 1.25.

Table 1
FAR groups.
𝐹𝐴𝑅 Observations Floors Floors/FAR Zoning categories

2.0 1615 3.81 1.80 R5D, R6B
1.25 4616 2.77 2.32 R5
0.9 4838 2.40 2.55 R4, R4-1, R4-A, R4-B
0.6 10,172 2.10 3.36 R3-1, R3-2, R3-A, R3-X
0.5 1185 2.02 3.88 R1-1, R1-2, R1-2A, R2, R2-A

The Floors and Floors/FAR columns of this table show the mean values of these variables
for each FAR level.

4. Results

4.1. Summary statistics

As just mentioned, the data we use consist of parcels with five
different 𝐹 values, as shown in Table 1 along with the number of
observations for each group and the zoning categories they contain. The
table also shows the average number of floors in each group, as well as
the average value of the floors/FAR ratio. These numbers show that the
parcels in our sample do not contain the very tall buildings for which
NYC is famous. The number of observations in those categories is just
too small for the application of our method. In addition, recall that, if a
building fully covers its lot, FAR is equal to the number of floors. With
the average floors/FAR ratio exceeding 1, it follows that, on average,
buildings in our sample do not cover their lots. For the FAR = 1.25
and 2.00 groups, the ratio value of approximately 2 indicates that lot
coverage is around 50% for these groups, with the fraction lower in the
groups with smaller FAR values (and higher ratios).

Figs. 3–7 show FAR histograms for the 5 different groups, with the
group’s FAR value shown by the vertical line. It is important to note
that, with more than 1000 observations in each group, these histograms
do not capture all the detail in the FAR distributions. However, they are
easier to read than more disaggregated histograms while adequately
capturing the bunching patterns around the FAR values, which tend
to be prominent. Note that the vertical line is sometimes just to the
left rather to the right of the modal FAR, which could reflect FAR
measurement error in the data. However, since values in a range around
FAR are counted as bunched, this discrepancy has no effect on our
computations. Fig. 8 shows a map of the sample parcel locations, which
must be read on the screen. As can be seen, parcels are lacking in
Manhattan, which partly accounts for the absence, on average, of tall
buildings. However, note that the 𝐹 = 2.0 group is closest to Manhattan,
accounting for its taller buildings relative to other groups.

4.2. Main results

Table 2 shows the 𝜃 and (𝛼 + 𝛽)∕𝛼 estimates for the different FAR
groups along with the assumed 𝛿 values used in their computation.
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Fig. 5. FAR distribution for 𝐹 = 0.9.

Fig. 6. FAR distribution for 𝐹 = 0.6.

Fig. 7. FAR distribution for 𝐹 = 0.5.

The bootstrap confidence intervals for 𝜃 as well as the mean 𝜃 from
the bootstrap are shown, along with the confidence intervals for the
marginal-cost ratio (𝛼+𝛽)∕𝛼, which is computed from the distribution of
𝜃𝜆. It is important to note that the 𝛿 interval value for each FAR group
is chosen by careful examination of a detailed histogram of the FAR
distribution for the group, like those in Figs. 3–7, so as to reasonably
capture the bunching area. The sensitivity analysis presented below
shows how the 𝜃 values are affected by the 𝛿 choices.

Consider first the FAR = 2.0 group. The 𝜃 value equals 1.132, which
yields a ̂(𝛼 + 𝛽)∕𝛼 value of 1.111, indicating that the marginal cost of
additional floor space is about 11% higher above FAR than below it, a
6

moderate cost penalty. At 1.134, the average bootstrap 𝜃 is very close
to the sample 𝜃 estimate, indicating little bias from the nonlinearity of
the estimation, and the distribution of the bootstrap 𝜃 values around
this mean is fairly symmetric, as shown in Fig. 9. The 95% confidence
interval for 𝜃, also shown in the table, ranges between 1.089 and 1.185,
while the confidence interval for the marginal-cost ratio (𝛼+𝛽)∕𝛼 ranges
between 1.075 and 1.156.

Turning to the FAR = 1.25 group, the 𝜃 value of 1.047, and the
associated ̂(𝛼 + 𝛽)∕𝛼 value of 1.039, indicate that the cost penalty above
FAR is now smaller, at only about 4%. The mean bootstrap 𝜃 is again
close to the sample estimate, and the 𝜃 distribution (not shown) is again
quite symmetric. Confidence intervals are again shown.

Results for the FAR = 0.9 and 0.5 groups are similar, with the 𝜃
estimates of 1.129 and 1.131, respectively. The associated ̂(𝛼 + 𝛽)∕𝛼
values are 1.108 and 1.110, yielding cost premia near 11%, as in the
FAR = 2.0 group. The average bootstrap 𝜃 values are again very close
to the sample estimates, and the 𝜃 distributions are symmetric.

The FAR = 0.6 group has a smaller 𝜃 like that of the 1.25 group.
It equals 𝜃 = 1.068, yielding an ̂(𝛼 + 𝛽)∕𝛼 estimate of 1.057 and a
cost penalty of about 6%. The other previous features of the bootstrap
results remain present.

The results in Table 2 thus show that a modest marginal-cost penalty
exists above FAR in each of the FAR groups, roughly ranging between
4% and 11%. Moreover, in all groups, the 𝜃 confidence intervals never
cover 𝜃 = 1.0, which would indicate the absence of a penalty. Therefore,
our findings confirm that developers in NYC can build above the
regulated FAR value for their parcel if they pay a modest additional
cost.

Recall that the extent of bunching (the number of developers with 𝑝
values between 𝑝∗ and 𝑝∗∗) depends on the magnitude of the marginal-
cost penalty for exceeding 𝐹 , given by (𝛼 + 𝛽)∕𝛼. In Figs. 3–7, the
bunching patterns are much less dramatic than those often seen in tax-
related studies, given the considerable masses of buildings above 𝐹 in
each case. The absence of such dramatic patterns suggests that the costs
of exceeding 𝐹 are not substantial, which is exactly what our results
show.

The connection between these results and those presented by
Brueckner and Singh (2020) deserves discussion. That paper estimated
the stringency of FAR regulation for five US cities, including NYC. The
procedure was to regress the log of land value for vacant parcels in a
particular city on the log of FAR for the parcel, with a high coefficient
indicating a large gap between the free-market and regulated FARs and
thus stringent regulation. By assuming a value for the Cobb–Douglas
capital exponent, the ratio of free-market to regulated FAR can be
computed, and with an exponent value of 0.6, the ratio equals 0.77
for NYC. With such a substantial gap and the relatively low cost of
exceeding FAR that we have estimated, there would appear to be
substantial impetus to make the expenditures needed to do so. Perhaps
the large amount of mass above FAR in the histograms in Figs. 3–7 is
evidence of such expenditures being widely undertaken.

4.3. Sensitivity analysis

As discussed above, the 𝜃 estimate for an FAR group, and the
implied estimate of the marginal-cost ratio, depend on the assumed
value of the interval parameter 𝛿. Table 3 shows sensitivity analysis,
with the first line within each group showing our assumed 𝛿 value
and 𝜃 values from Table 2, and the second and third lines showing
the 𝜃 estimates using smaller and larger 𝛿 values. As can be seen, the
𝜃 estimates vary somewhat with the value of 𝛿. But the only striking
change occurs in the FAR = 0.9 group, where raising 𝛿 from the
assumed value of 0.15 to 0.175 increases 𝜃 from 1.129 all the way to
1.381. Overall, the sensitivity analysis does not change the conclusion
that building above FAR is costly for developers.
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Table 2
Estimated 𝜃 values and confidence intervals.

𝐹𝐴𝑅 Observations 𝛿 𝜃 Confidence int. avg. 𝜃 ̂(𝛼 + 𝛽)∕𝛼 Confidence int.

2.0 1615 0.15 1.132 [1.089, 1.185] 1.134 1.111 [1.075, 1.156]
1.25 4616 0.10 1.047 [1.028, 1.068] 1.047 1.039 [1.023, 1.057]
0.9 4838 0.15 1.129 [1.094, 1.165] 1.129 1.108 [1.080, 1.139]
0.6 10,172 0.04 1.068 [1.055, 1.082] 1.068 1.057 [1.047, 1.069]
0.5 1185 0.04 1.131 [1.082, 1.194] 1.133 1.110 [1.070, 1.163]

𝜃 is the estimated value of ((𝛼 + 𝛽)∕𝛼)1∕𝜆, generated by assuming the given value of the interval parameter 𝛿. The
95% confidence interval for 𝜃 is based on a standard error generated through a 10,000-draw bootstrap procedure
with replacement, and the average 𝜃 generated by the bootstrap is also shown. The marginal-cost ratio (𝛼 + 𝛽)∕𝛼 is
estimated by 𝜃𝜆, using 𝜆 = 0.85, and its confidence interval is also shown.
Fig. 8. Location of sample properties by FAR limit.
5. Gains in housing floor space from eliminating FAR regulation

As explained in the introduction, FAR regulation reduces the
amount of housing that can be produced in NYC, a city that many
observers view as under-supplying housing floor space. Our analysis
allows us to compute the extra housing floor space that could be gained
by eliminating the regulation.18 Since the exercise assumes that existing

18 Peng (2023) examines the effects on NYC floor space of the land-use
reform described in footnote 16 above. The paper estimates a dynamic equilib-
rium model where forward-looking developers face fixed costs to redevelop a
parcel of land, which allows for a slow readjustment of floor space supply after
the relaxation in FAR limits. After estimating the model, the paper performs
a long-run counterfactual analysis and finds an increase in floor space by the
7

buildings would be replaced after FAR deregulation, the computed
impacts should be viewed as long-run effects. In addition, the exercise
ignores any price effects from greater housing supply, as discussed
further below.

5.1. Analysis based on the theoretical model

To understand how our procedure works, focus on the theoretical
model of Section 2, and consider first a developer who chooses some

year 2050 of around 0.7%. We find similar increases in floor space from a
marginal increase in FAR, as explained below. Leather (2023) carries out a
related exercise, using a data set of which the current one is a subset.
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Table 3
Sensitivity analysis.
𝐹𝐴𝑅 𝛿 𝜃

2.0 0.15 1.132
0.10 1.057
0.20 1.165

1.25 0.10 1.047
0.05 1.040
0.15 1.033

0.9 0.15 1.129
0.125 1.028
0.175 1.381

0.6 0.04 1.068
0.03 1.037
0.05 1.119

0.5 0.04 1.131
0.03 1.080
0.05 1.156

This table shows how 𝜃 varies as the interval value 𝛿 changes.

Fig. 9. Bootstrap distribution of �̂� for 𝐹 = 2.0.

= 𝐹𝑛𝑜𝑤 > 𝐹 under the current limitations (‘‘now’’ denotes current).
From (2), the price 𝑝 faced by this developer, denoted 𝑝, satisfies 𝑝 =
(𝛼 + 𝛽)𝐹 𝜆

𝑛𝑜𝑤. Inverting this relationship (as in (3)) to find 𝐹𝑛𝑜𝑤 yields
𝐹𝑛𝑜𝑤 = (𝑝∕(𝛼 + 𝛽))1∕𝜆 > 𝐹 . With FAR regulation eliminated, the 𝛼 + 𝛽
factor becomes 𝛼, indicating a lower marginal cost in the FAR range
above the old 𝐹 . The developer would then choose a new and larger 𝐹
alue satisfying 𝑝 = 𝛼𝐹 𝜆

𝑛𝑒𝑤, or 𝐹𝑛𝑒𝑤 = (𝑝∕𝛼)1∕𝜆 > 𝐹𝑛𝑜𝑤. The ratio between
he new and current FAR values is then given by

𝐹𝑛𝑒𝑤
𝐹𝑛𝑜𝑤

=
(𝑝∕𝛼)1∕𝜆

(𝑝∕(𝛼 + 𝛽))1∕𝜆
=

(

𝛼 + 𝛽
𝛼

)1∕𝜆
= 𝜃. (13)

The chosen FAR thus rises by the factor 𝜃 with elimination of FAR
regulation, so that 𝐹𝑛𝑒𝑤 = 𝜃 𝐹𝑛𝑜𝑤. Using this relationship and recalling
that 𝐹 equals floor space per acre of land, the new supply of floor space
from the developer’s lot is given by

𝓁 × 𝐹𝑛𝑒𝑤 = 𝓁 𝜃 𝐹𝑛𝑜𝑤, (14)

where 𝓁 is the lot size. Thus, new floor space on the parcel equals lot
size times 𝜃 times the current FAR. By contrast, the current amount of
loor space equals 𝓁𝐹𝑛𝑜𝑤. The expressions 𝓁𝐹𝑛𝑜𝑤 and 𝓁 𝜃 𝐹𝑛𝑜𝑤 can be

summed across all parcels with 𝐹𝑛𝑜𝑤 > 𝐹 to get total floor space above
𝐹 , both before and after the elimination of FAR regulation.19

Turning to bunching developers, recall that in the theoretical model,
developers who bunch at 𝐹 have 𝑝 values in the range [𝑝∗, 𝑝∗∗] =

19 Note that the floor-space gain depends on 𝜃, which equals the
marginal-cost ratio raised to a power, not directly on the ratio itself.
8

[𝛼𝐹
𝜆
, (𝛼+𝛽)𝐹

𝜆
]. In the absence of FAR regulation, the developer facing

∗ = 𝛼𝐹
𝜆

would choose 𝐹 = 𝐹 , using the first line of (3). Similarly, a
developer facing 𝑝∗∗ = (𝛼+𝛽)𝐹

𝜆
would choose 𝐹 = ((𝛼+𝛽)∕𝛼)1∕𝜆𝐹 = 𝜃𝐹 ,

again using the first line of (3). Approximating based on an average
of these endpoint values, bunching developers on average would thus
choose 𝐹 equal to (𝐹 + 𝜃𝐹 )∕2 = (1∕2)(1 + 𝜃)𝐹 > 𝐹 .

Therefore, for current bunchers, the average floor space in the
absence of FAR regulation would equal 𝓁 × (1∕2)(1 + 𝜃) × 𝐹 , assuming

is the same for all bunchers. The current floor space for bunchers
quals 𝓁𝐹 . Both these expressions would be summed across bunchers

to get the total floor space with and without FAR regulation. Finally,
for parcels with 𝐹𝑛𝑜𝑤 < 𝐹 , FAR deregulation yields no change in floor
pace.

.2. Taking the theory to the data

In taking the previous theoretical formulas to the data, we must
ecognize that, unlike in the model, bunching is viewed as occurring
ver a range of 𝐹 values instead of at the single point 𝐹 . In the
stimation, the bunching range has been set at [𝐹 −𝛿, 𝐹 +𝛿]. As a result,

we view developers who breach the FAR limit as those who set 𝐹 above
𝐹 + 𝛿. Developers who bunch are those in the bunching interval, but
to be consistent with the model, we treat these developers as choosing
𝐹 = 𝐹 rather than the values near 𝐹 that they actually choose. With
these amendments, both the total existing floor space and the floor
space that would be produced in the absence of FAR regulation can
be computed for each of the five 𝐹 groups.

Letting 𝑖 denote the parcel and 1 denote an indicator function, total
current floor space for a given 𝐹 group is given by20

𝑆𝑃𝐴𝐶𝐸𝑛𝑜𝑤 =
∑

𝑖

{

𝓁𝑖 𝐹𝑖 × 𝟏[𝐹𝑖 < 𝐹 − 𝛿] + 𝓁𝑖 𝐹

× 𝟏[𝐹 − 𝛿 < 𝐹𝑖 < 𝐹 + 𝛿]

+ 𝓁𝑖 𝐹𝑖 × 𝟏[𝐹𝑖 > 𝐹 + 𝛿]
}

. (15)

Recall that, as explained above, a parcel’s floor space in the bunching
range is set equal to 𝓁𝑖𝐹 rather than 𝓁𝑖𝐹𝑖.21

Total floor space without FAR regulation is given by

𝑆𝑃𝐴𝐶𝐸𝑛𝑒𝑤 =
∑

𝑖

{

𝓁𝑖 𝐹𝑖 × 𝟏[𝐹𝑖 < 𝐹 − 𝛿] + 0.5(1 + 𝜃)𝓁𝑖 𝐹

× 𝟏[𝐹 − 𝛿 < 𝐹𝑖 < 𝐹 + 𝛿]

+ 𝜃 𝓁𝑖 𝐹𝑖 × 𝟏[𝐹𝑖 > 𝐹 + 𝛿]
}

. (16)

ote that, following the discussion above, floor space in the bunching
ange is inflated by the factor 0.5(1 + 𝜃), while floor space above 𝐹 + 𝛿

is inflated by the factor 𝜃. Floor space below 𝐹 − 𝛿 is unchanged.
The results of computing (15) and (16) for each of the FAR groups

re shown in Table 4. The largest percentage gains in floor space from
he elimination of FAR regulation are in the FAR = 2.0, 0.9, and 0.5
roups, where gains are 9.9%, 8.9%, and 8.8% respectively. The gains
or the other groups are smaller, in the 3%–4% range. The results
how that the percentage floor-space gains from the removal of FAR
egulation can be appreciable in FAR groups containing buildings that

are relatively short by NYC standards. If this pattern extends to parcels
with higher FAR values, which are outside our sample, the overall floor
space gains to NYC from universal removal of FAR regulation would be
noteworthy.

20 While lot size for bunchers was, for simplicity, assumed equal in the
theoretical discussion above, (14) allows it to differ across parcels

21 This choice will have little effect given that the average of 𝐹𝑖 over the
bunching range will be close to 𝐹 .
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Table 4
Floor space gain without FAR regulation.
𝐹𝐴𝑅 𝑆𝑃𝐴𝐶𝐸𝑛𝑜𝑤 𝑆𝑃𝐴𝐶𝐸𝑛𝑒𝑤 % gain

2.0 11,125,622 12,228,751 9.9%
1.25 16,337,615 16,815,202 2.9%
0.9 14,415,852 15,702,399 8.9%
0.6 18,856,017 19,664,698 4.3%
0.5 3,669,863 3,993,373 8.8%

𝑆𝑃𝐴𝐶𝐸𝑛𝑜𝑤 is current total floor space in parcels with the given FAR value, while
𝑆𝑃𝐴𝐶𝐸𝑛𝑒𝑤 is predicted total floor space after removal of FAR regulation.

The extra floor space generated by FAR deregulation would put
downward pressure on the prices 𝑝 per square foot across all parcels.
These price declines would in turn reduce the 𝐹 values that developers
would choose. As a result, the floor-space gains in Table 4 should
be interpreted as upper bounds on the predicted gains. Moreover,
since any floor-space gains would only be realized in the long run
as buildings are replaced, such a distant horizon would provide more
room for secular price changes that could also affect chosen FARs and
thus changes in floor space.

5.3. Floor-space gains from a marginal or non-marginal increase in 𝐹

The online appendix shows how to calculate the change in floor
pace for a marginal increase in 𝐹 rather than for a complete elimi-
ation of FAR regulation, again relying on the theoretical model. As
bove, there are multiple groups to consider. The calculation remains
omplicated, but in the end, it leads to an intuitive conclusion: the rate
f increase of total floor space when 𝐹 increases by an infinitesimal
mount 𝜖 is just equal to the total amount of space bunched at the
riginal 𝐹 . 𝐹 for each of these buildings increases by 𝜖, so that they

become bunched at the marginally higher 𝐹 . Dividing the FAR gain by
to evaluate the derivative, the result is simply 𝐵, the original amount
f bunching (multiplying by lot size gives the floor-space gain).

The online appendix also generates formulas for a non-marginal
ncrease in 𝐹 , denoted 𝜀, which raises the FAR limit to 𝐹 + 𝜀. The
nalysis develops formulas for the case where some of the original
unchers continue to bunch at the higher 𝐹 , which requires that the
ld upper bound 𝑝∗∗ of the bunching 𝑝-range (equal to (𝛼 + 𝛽)𝐹

𝜆
) is

arger than the lower bound of the new bunching 𝑝-range under the
igher 𝐹 , equal to 𝛼(𝐹 + 𝜀)𝜆. However, the effect of the 𝐹 increase is
ost easily evaluated when these two quantities are equal (so that no

ld bunchers become new bunchers), which reduces to the requirement
hat 𝐹 +𝜀 equals 𝜃𝐹 , using (11). In this case, the online appendix shows

that the incremental floor space from the larger 𝐹 is given by

((𝜃 − 1)𝐹 )2

2
1 + 𝜃
𝜃

ℎ1(𝐹 ) × 𝓁, (17)

here 𝓁 is average lot size for the FAR group. Replacing ℎ1(𝐹 ) in (17)
y its sample equivalent ℎ+ and evaluating the expression for each
f the FAR groups yields the results shown in Table A1 in the online

appendix. Using the 𝑆𝑃𝐴𝐶𝐸𝑛𝑜𝑤 values from Table 4, the table shows
the percentage gain in floor space from the non-marginal increase in
FAR, along with elasticity of total floor space with respect to that
increase (equal to the percentage gain divided by 𝜃−1, the proportional
gain in 𝐹 ). The incremental floor space is highly variable across the
groups, leading to a range of percentage gains and elasticities, most
of which are quite small (the largest elasticity is the 0.15 value for
the 𝐹 = 2.0 group).22 The reasons for this variability are that (𝜃 − 1)2

s very small in the groups where 𝜃 is closest to 1.0 and that the ℎ+

22 The absolute increase in floor space in the 2.0 FAR group is 1.9% of the
original value, a number similar to Peng’s (2023) 0.7% percentage increase
from the reform she studies, which was also non-marginal in nature.
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values vary considerably (by as much as a factor of 60) across the
groups. Nevertheless, the results in Table A1 show that computing the
floor-space gain from a non-marginal increase in 𝐹 is feasible.

6. Conclusion

This paper has presented a real-estate application of the bunching
methodology widely used in other areas of applied microeconomics.
Our results show that the marginal cost of floor space increases mod-
estly when the developer exceeds a parcel’s regulated building height.
We use our estimates to predict the additional floor space that can be
created by a complete removal of building-height regulation in NYC.
This last exercise is circumscribed by our focus on a limited number of
zoning categories, but the results suggest that New York could secure
notably more housing through lighter regulation.

Our method could be applied in other real-estate contexts. For
example, minimum parking requirements (MPRs) impose costly restric-
tions on developers throughout the US, forcing provision of off-street
parking to prevent congestion in street parking around a new develop-
ment (see Cutter and Franco, 2012). If developers are able to go below
the specified MPR for a parcel (thus providing fewer parking spaces) by
incurring some additional costs, the bunching method could be used to
estimate their magnitude, assuming that suitable data were available.

The paper’s method could also be applied to FAR regulation in other
cities. Although analogs to the Privately Owned Public Spaces and air-
rights purchase programs, which allow increments to FAR in NYC, may
not be available elsewhere, other cities presumably provide alternative
avenues for exceeding their height limits.

Finally, while this paper has for simplicity used the basic bunching
methodology of Saez (2010), progress has been made since then in
refining and strengthening the method. These new developments are
surveyed by Bertanha et al. (2023), and their application to our NYC
data would be a useful extension of the present research.
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Appendix A

A.1. The cost effect of public open space

Suppose that the developer devotes a fraction 1 − 𝜙 of his lot
o public open space in order to secure a more generous FAR limit,
enoted 𝐹 𝑜𝑠 > 𝐹 . Profit exclusive of land cost under the Cobb–Douglas
ssumption then equals 𝑝𝐾𝜌(𝜙𝓁)1−𝜌 − 𝐾, with land under the building
qual to 𝜙𝓁. Dividing 𝐾𝜌(𝜙𝓁)1−𝜌 by 𝓁, FAR based on the entire lot area

is thus given by 𝐹 = 𝜙1−𝜌𝑆𝜌, where 𝑆 again equals 𝐾∕𝓁. As a result,
𝑆 = (𝐹∕𝜙1−𝜌)1∕𝜌 ≡ 𝐶(𝐹 ), and cost then equals 𝐶(𝐹 ) = 𝜇𝐹𝜙, where
= 1∕𝜌 and 𝜇 ≡ 𝜙(1−𝜌)∕𝜌 > 1.
Thus, cost exceeds 𝐹𝜙, the 𝐶(𝐹 ) expression in the absence of open

space, for all allowable values of 𝐹 when open space is provided.
This outcome contrasts with the air-rights case, where extra costs are
incurred only above 𝐹 . Despite this difference, the first-order condition
for choice of 𝐹 will involve a multiplicative factor (1 vs. 𝜇) that jumps
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to a higher value above 𝐹 , just as in (2). Crucially, if his chosen 𝐹 is
below 𝐹 , the developer will not provide open space, so that the lower
ost function, and its smaller multiplicative factor of 1 < 𝜇, is relevant
or the first-order condition over this range.

However, since the shift to the open-space regime that occurs at 𝐹
pplies to the entire range of 𝐹 values, it generates a discontinuous
ncrease in cost, in contrast to the continuity of the cost function under
he purchase of air rights, as captured in (1). As a result, the open-space
egime generates a ‘‘notch’’ in the developer’s profit function along with
change in its slope, which would require a different empirical method

han the one we use (Kleven and Waseem, 2013). However, since a
imple purchase of air rights appears to be an easier (and presumably
uch more common) path to exceeding 𝐹 than provision of open space,

our use of the kink rather than the notch methodology appears to be
appropriate.

A.2. Derivation of Eq. (8)

Eq. (8) is derived as follows:

ℎ0(𝐹 + 𝛥𝐹 ) = 𝑡[𝛼(𝐹 + 𝛥𝐹 )𝜆] 𝛼𝜆(𝐹 + 𝛥𝐹 )𝜆−1

= 𝑡
⎡

⎢

⎢

⎣

𝛼

(

(

𝛼 + 𝛽
𝛼

)1∕𝜆
𝐹

)𝜆
⎤

⎥

⎥

⎦

𝛼𝜆

[

(

𝛼 + 𝛽
𝛼

)1∕𝜆
𝐹

] 𝜆−1

= 𝑡((𝛼 + 𝛽)𝐹
𝜆
) 𝛼𝜆

(

𝛼 + 𝛽
𝛼

)(𝜆−1)∕𝜆
𝐹

𝜆−1

=
(

𝛼 + 𝛽
𝛼

)−1∕𝜆
𝑡((𝛼 + 𝛽)𝐹

𝜆
)(𝛼 + 𝛽)𝜆𝐹

𝜆−1

=
(

𝛼 + 𝛽
𝛼

)−1∕𝜆
ℎ1(𝐹 ). (A.1)

The first line of (𝑎1) uses (3), the second line uses the definition of 𝛥𝐹
n (5), the third line simplifies the second line, the fourth line further
implifies the third line, and the last line uses the definition of ℎ1 in
4).

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jue.2024.103683.
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