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Abstract

We propose a bootstrap method to correct limited mobility bias in the variance compo-

nents of AKM models. Our method handles multiple corrections without increasing com-

putational cost and works with any symmetric estimator of the error covariance matrix, in-

cluding the one from Kline, Saggio, and Sølvsten (2020). Monte Carlo simulations show our

method corrects the bias and is faster than alternative methods. Using French administra-

tive data, we apply our method in four ways: (i) a full-sample variance decomposition of log

wages under different assumptions on the error structure, (ii) correcting thousands of labor

markets to study the relationship between market size and worker-firm or worker-coworker

sorting, (iii) analyzing gender differences and (iv) life cycle patterns in wage components.

In all cases, the corrections are important to interpret the results.
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The model of log wages introduced by Abowd, Kramarz, and Margolis (1999), AKM from

now on, has been very influential in the way labor economists think about wage determinants.

The most basic version of the AKM model is:

log wit = θi + ψJ (i,t) + εit (1)

where θi is worker i’s fixed effect, J (i, t) is a function that maps where worker i is employed in

period t, ψJ (i,t) is the firm J (i, t) fixed effect, and εit is a residual.

A common exercise in labor economics is to do a variance decomposition of (1) plugging

in the OLS estimator of the fixed effects. But even if the fixed effects estimator is unbiased,

quadratic objects in the estimated parameters, such as the elements of a variance decomposi-

tion, suffer from small sample bias (Andrews, Gill, Schank, and Upward, 2008). In the AKM

context, Abowd, Kramarz, Lengermann, and Pérez-Duarte (2004) dubbed the bias of these

quadratic objects “limited mobility bias” as having few movers leads to noisier estimates and

to the bias of variance components. Using data for different countries, Bonhomme, Holzheu,

Lamadon, Manresa, Mogstad, and Setzler (2023) show that the limited mobility bias is system-

atically large, and it can change the economic interpretation of the results.

In previous work, Andrews et al. (2008) derive formulas for correcting the bias when the

errors are homoscedastic, and Gaure (2014) provides formulas for more general variance struc-

tures. Unfortunately, the direct implementation of these corrections in high dimensional models

is infeasible. The reason is that the corrections entail computing the inverse of an impractically

large matrix, which has prevented the direct application of the correction formulas.1

In this paper, we propose a bootstrap method to correct for limited mobility bias that is

computationally feasible. Compared to other methods in the literature that correct for this bias

(Gaure, 2014; Kline, Saggio, and Sølvsten, 2020), the main advantage of our bootstrap method is

that it allows the computation of many corrections without increasing the computational cost.

Besides being scalable in the number of corrections, our method is easy to implement, fast, and

it accommodates different estimators of the covariance matrix of the errors, including the leave-

1Some examples of papers doing a variance decomposition of log wages into worker and firm fixed effects
without correcting for limited mobility bias are: Sorkin (2018), Card, Cardoso, Heining, and Kline (2018), Alvarez,
Benguria, Engbom, and Moser (2018), Bartolucci, Devicienti, and Monzón (2018), Song, Price, Guvenen, Bloom,
and Von Wachter (2019), Leknes, Rattsø, and Stokke (2022), Arellano-Bover and San (2023), and Helm, Kügler, and
Schönberg (2023), among others.
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one-out and leave-cluster-out estimators used by Kline, Saggio, and Sølvsten (2020), KSS from

now on.

To illustrate the advantages of our method, consider a researcher who is interested in un-

derstanding how much the different components of an AKM model explain the variance of log

wages for different subgroups of the population. This can be done, for example, by estimating

separate variance decompositions for workers by race and gender (Gerard, Lagos, Severnini,

and Card, 2021), by city (Dauth, Findeisen, Moretti, and Suedekum, 2022), or by occupation

(Heath Milsom and Hou, 2024).2 The computational cost of correcting for the variance compo-

nents with alternative methods scales linearly with the number of subgroups. The increasing

cost has prevented researchers from analyzing variance components at increasingly finer par-

titions of the data. Our method overcomes this limitation. The computational cost of doing

an arbitrary number of corrections with our method is practically the same cost of doing one

correction.

Using French administrative data, we present four applications that highlight two key ad-

vantages of our bootstrap correction: (i) its ability to accommodate different assumptions about

the error covariance matrix, and (ii) its scalability in handling corrections across different sub-

groups, while using the full sample to estimate the model.

First, we do a basic AKM variance decomposition under different assumptions for the co-

variance matrix of errors. We show that clustering at various levels—observation, match, or

worker-occupation—produces similar results.

Second, we study sorting patterns between workers and firms in labor markets, defined

as the intersection of occupation and commuting zone, resulting in over 5,000 markets in our

sample. Our method corrects for each market while using the full sample for estimation. In

contrast, previous studies estimate and correct for subgroups separately, losing information on

workers who move between them.3 We use these corrected estimates to revisit the idea in urban

economics that larger labor markets lead to better worker-firm sorting. Our findings suggest

2Heath Milsom and Hou (2024) also do decompositions by city.
3For example, Dauth et al. (2022) estimate an AKM model for each city in Germany and do a correction for each

city. Pérez, Meléndez, and Nuno-Ledesma (2023) do the same with data from Mexico. However, as Leknes et al.
(2022) point out, these approaches lose valuable information on workers who move between cities. One exception
is Heath Milsom and Hou (2024), who adapt the pytwoway function of Bonhomme et al. (2023) to implement the
KSS correction. They estimate the model using the full sample and then loop over cities or occupations to apply
the corrections. This increases the computational cost linearly with the number of corrections.
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that sorting is indeed stronger in larger locations, as evidenced by a higher correlation between

worker and firm fixed effects in larger labor markets. We find that this positive relationship is

not driven by systematic bias differences across markets. In fact, after correcting for limited mo-

bility bias, the positive relationship becomes even more pronounced, with the slope doubling

or tripling in magnitude.

We also study the intensity of sorting in larger markets, measured by the correlation between

worker fixed effects and the average fixed effects of coworkers (Lopes de Melo, 2018). Using

uncorrected estimates, larger markets appear to have higher sorting intensity. However, after

correction, the relationship reverses, suggesting workers are not as segregated by worker fixed

effects in larger markets.

In the third application, we compare AKM decompositions by gender. Corrected estimates

show a higher correlation between worker and firm fixed effects for women than for men, con-

sistent across two periods: 2009-2014 and 2015-2019. Naive estimates, however, show a slightly

higher correlation for men in the second period. This suggests that the assumption of a constant

bias over different groups or time—like in Song et al. (2019)—may be inaccurate.

Lastly, we explore how AKM variance components evolve across the life cycle by correcting

for each age group. We find that the log wage variance is increasing with age, mainly driven by

an increase of the variance of worker fixed effects over the life cycle.

Literature. Our paper contributes to the small body of literature focused on accurately esti-

mating quadratic forms. A key related work is KSS, which also presents an iterative method to

correct the bias in quadratic forms. Their method includes clustering at the observation level or

at the worker-firm match level. We extend this approach by allowing clustering at any level, as

long as all model parameters remain identifiable when any single cluster is removed. This sam-

ple restriction is also required by KSS. We provide a detailed comparison between our bootstrap

method and the KSS approach in Section 4, where we discuss the strengths of both methods.

Inspired by KSS, Babet, Godechot, and Palladino (2022) propose a modified split-sample

correction method similar to the split-panel jackknife by Dhaene and Jochmans (2015). These

methods are effective at reducing bias and are very fast, requiring only a few model estima-

tions. In fact, Babet et al. (2022) show that their approach completely eliminates bias when

the covariance matrix is diagonal. However, they do not explore the effects of their method

3



when the covariance matrix is not diagonal. Still, the results from Dhaene and Jochmans (2015)

suggest that the split-sample method could also reduce bias in such cases.4 Additionally, the

methods from Babet et al. (2022) and Dhaene and Jochmans (2015) may become impractical

when correcting for multiple subsamples simultaneously.

Since the bias arises from noisy estimates, Bonhomme, Lamadon, and Manresa (2019) sug-

gest grouping worker and firm fixed effects to obtain more precise grouped estimates, which

can then be used to calculate the quadratic forms. While this approach for estimating quadratic

forms across the entire sample may be reasonable, it may become less effective if grouping fixed

effects reduces heterogeneity within the subsamples of interest, especially when the number of

subsamples far exceeds the number of fixed effects groups.

The paper is organized as follows. Section 1, derives the bias. Section 2 presents the boot-

strap correction. Section 3 discusses the practical considerations when using unbiased estima-

tors of the errors covariance matrix. Section 4 compares our method with the one developed by

KSS. Section 5 presents the applications with the French data. Section 6 concludes.

1 The bias

Suppose we have data (y, X) where y is an n × 1 vector and X is a matrix of covariates of

dimension n × k. Consider the linear regression model:

y = Xβ + ε, (2)

where E (ε |X) = 0. We are interested in estimating the quadratic form φ = βTAβ for some

known matrix A of dimensions k × k, where E (A |X) = A.

Let β̂ be the OLS estimator of β. We can now define an estimator of φ.

Definition 1 (Plug-in Estimator). The plug-in estimator of the quadratic form is:

φ̂PI ≡ β̂TAβ̂.
4Babet et al. (2022) do not explore in detail the properties of their split-sample estimator, as it is not the main

focus of their paper. Extending their approach to non-diagonal covariance matrices and studying its properties
could be a valuable direction for future research, given the practicality of the method.
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Taking the conditional expectation over the plug-in estimator, we get:

E
(

β̂TAβ̂
∣∣∣X
)
= E

(
β̂T
∣∣∣X
)

AE
(

β̂
∣∣∣X
)
+ tr

(
AV

(
β̂
∣∣∣X
))

= φ + tr
(

ST
XASXV (ε |X)

)
,

where SX =
(
XTX

)−1 XT.

Definition 2 (Bias). The bias of the quadratic form β̂TAβ̂ is:

δ ≡ E
(

β̂TAβ̂
∣∣∣X
)
− βTAβ = tr

(
ST

XASXV (ε |X)
)

. (3)

Computing δ is infeasible as we do not know V (ε |X). Therefore, let V̂ be an estimator

of the covariance matrix V (ε |X). We can now define a bias correction and a bias corrected

estimator of the quadratic form.

Definition 3 (Direct bias correction). Given a covariance matrix estimator V̂, the direct bias correction

of β̂TAβ̂ is equal to:

δ̂D ≡ tr
(

ST
XASXV̂

)
. (4)

Definition 4 (Bias corrected estimator). The direct bias corrected estimator of the quadratic form is

φ̂ ≡ φ̂PI − δ̂D.

Given the linearity of the trace and expectation operators, we get the next proposition.

Proposition 1 (Unbiasedness of δ̂D). E
(

δ̂D

∣∣∣X
)
= δ if and only if E

(
V̂

∣∣∣X
)
= V (ε |X).

All proofs are in the Appendix. Given the previous proposition, the next result follows

immediately.

Corollary 1 (Unbiasedness of φ̂). E (φ̂ |X) = φ if and only if E
(

V̂

∣∣∣X
)
= V (ε |X).

For the case where the number of covariates grows with sample size, KSS show conditions

for the consistency of φ̂ using a diagonal covariance matrix estimator.5

5See Assumption 1 and Lemma 3 in KSS.
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2 Bootstrap correction

The direct bias correction δ̂D is computationally infeasible in typical applications of AKM de-

compositions involving millions of fixed effects, as it requires inverting XTX. To address this

challenge, we propose a bootstrap-based estimation of δ̂D, which replicates the bias structure of

the plug-in estimator, making the computation tractable.

To motivate the use of our bootstrap, first note that the bias δ is flat: it does not depend on

the values of the true parameters β. Thus, we can replicate the bias without paying attention to

the value β.

Let v∗ be a random vector. Assume E (v∗ |X, ε) = 0 and V (v∗ |X, ε) = V̂. Let β̂∗ be the OLS

estimator of the regression coefficients in regressing v∗ on X. Then, the following proposition is

the first step to motivate the bootstrap correction.

Proposition 2 (Equivalence to δ̂D). The conditional expectation on the quadratic form using β̂∗ is

equal to the direct bias correction:

E
(

β̂∗T
Aβ̂∗

∣∣∣X, ε
)
= tr

(
ST

XASXV̂
)
= δ̂D.

The previous proposition already suggests what to do: bootstrap v∗ a number of times and

get an estimate of E
(

β̂∗T
Aβ̂∗

∣∣∣X, ε
)

using a sample average.

For this bootstrap to work, we need to make sure that the covariance matrix of the boot-

strapped errors is equal to V̂. In practice, this means, first, to simulate a random vector r with

independent entries with mean zero and unit variance, and find a matrix B such that:

V (Br |X, ε) = BV (r)BT = BBT = V̂.

We simulate r from a Rademacher distribution: each observation can be 1 or −1, each with

probability 1/2. With B in hand, the next step is to get the vector Br a number of times, and

for each time compute the quadratic form β̂∗T
Aβ̂∗. Finally, we only need to take the sample

average over the sequence of estimated quadratic forms to get an estimate of the direct bias

correction δ̂D.

Choosing B is easy when V̂ is positive semi-definite. For example, when V̂ is diagonal with
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non-negative entries. Then, B is just a diagonal matrix with entries equal to the square root of

the entries of V̂. When V̂ is not diagonal but still positive semi-definite, a common choice to

find B is to use the Cholesky decomposition, popular in the VAR literature.

However, we do not want to restrict ourselves to positive semi-definite estimators of the co-

variance matrix, as Proposition 1 already imposes restrictions on V̂ to get an unbiased estimator

of δ: V̂ should be an unbiased estimator of V (ε |X). Recently, Kline et al. (2020), Anatolyev

(2021), and Jochmans (2022) propose unbiased covariance matrix estimators that are robust to

heteroscedasticity, but are not positive semi-definite.

A random vector with a non-positive semi-definite covariance matrix would contain com-

plex numbers, which complicates the application of the bootstrap. However, we can bypass

this complication by noting that we can decompose any real symmetric matrix as the difference

of two real positive semi-definite matrices. To see this, assume V̂ is symmetric but possibly not

positive semi-definite. Using the spectral decomposition of a real symmetric matrix, we get:

V̂ = QΛQT,

where the matrix Λ is a diagonal matrix containing the eigenvalues of V̂, with the ith diagonal

term equal to λi. We can further decompose Λ as

Λ = Λ+ − Λ−,

where the ith diagonal terms of Λ+ and Λ−, denoted λ+,i and λ−,i, are equal to:

λ+,i =

λi, if λi ≥ 0

0, otherwise,
λ−,i =

|λi|, if λi < 0

0, otherwise.

This means that V̂ is equal to:

V̂ = Q (Λ+ − Λ−)QT = QΛ+QT︸ ︷︷ ︸
V̂+

−QΛ−QT︸ ︷︷ ︸
V̂−

, (5)

where V̂+ and V̂− are positive semi-definite. The decomposition of V̂ means that we can rewrite
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the direct bias correction as:

δ̂D = tr
(

ST
XASXV̂+

)
− tr

(
ST

XASXV̂−
)

.

Each of these trace terms can be represented as the expectations of some quadratic form. To see

this, let us define the following two random vectors:

v∗
+ ≡ Q (Λ+)

1/2︸ ︷︷ ︸
B+

r, and v∗
− ≡ Q (Λ−)

1/2︸ ︷︷ ︸
B−

r,

which leads to the next proposition.

Proposition 3 (Decomposition of δ̂D). Let β̂∗
+ and β̂∗

− be the OLS estimator of the regression coef-

ficients in regressing v∗
+ and v∗

− on X. Then,

δ̂D = E
(

β̂∗T
+Aβ̂∗

+

∣∣∣X, ε
)
− E

(
β̂∗T

−Aβ̂∗
−

∣∣∣X, ε
)

.

The last proposition motivates the following bootstrap estimator for any covariance matrix

estimator, positive semi-definite or not.

Definition 5 (Bootstrap Bias Correction). Let v∗
+(j) and v∗

−(j) as the jth simulations of vectors v∗
+

and v∗
−, where j = 1 . . . J. Also, let β̂∗

+(j) and β̂∗
−(j) be the OLS estimator of the regression coefficients

in regressing v∗
+(j) and v∗

−(j) on X. Then, the bootstrap bias correction is defined as:

δ∗ ≡ 1
J

J

∑
j=1

β̂∗
+(j)

T
Aβ̂∗

+(j)− 1
J

J

∑
j=1

β̂∗
−(j)

T
Aβ̂∗

−(j).

The simple linear form of the bootstrap correction leads to the following result.

Proposition 4 (Unbiasedness and Consistency of δ∗). The bootstrap bias correction δ∗ is:

1. Unbiased: E (δ∗ |X, ε) = δ̂D.

2. Consistent: Fix n and k, and let J −−→ ∞, then δ∗
a.s.−−→ δ̂D.

The last proposition means that we can estimate the direct bias correction δ̂D to arbitrary

precision, and implies the following result.
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Corollary 2. E (δ∗ |X) = δ if and only if E
(

V̂
∣∣∣X
)
= V (ε |X).

The main computational cost of our method is to compute β̂∗
+ and β̂∗

−, not the number

of quadratic forms to correct. In other words, if we would like to estimate bias corrections for

the set of quadratic forms {β̂TAm β̂} for m = 1 . . . M, we just need to calculate the bootstrap

analogous quadratic forms; a step with negligible computational cost.

To clarify this computational advantage and to summarize our bootstrap method, we present

below a ‘high-level’ algorithm to do corrections for an arbitrary number of quadratic forms,

provided we have a covariance matrix estimate V̂.

Algorithm 1 Bootstrap Bias Correction

1: Let V̂ be the covariance matrix estimate.
2: Using the spectral decomposition of V̂ get Q and Λ such that V̂ = QΛQT.
3: Decompose Λ = Λ+ − Λ−, with Λ+ having the positive eigenvalues and Λ− the absolute

value of the negative eigenvalues.
4: Get B+ = Q (Λ+)

1/2 and B− = Q (Λ−)
1/2.

5: for j = 1, . . . , J do
6: Simulate a vector r of length n of independent Rademacher entries.
7: v∗

+ = B+r, v∗
− = B−r.

8: Get β̂∗
+ and β̂∗

− by solving:

XTXβ̂∗
+ = XTv∗

+ and XTXβ̂∗
− = XTv∗

−.

9: Compute δ∗m
(j) =

(
β̂∗T

+Am β̂∗
+

)
−
(

β̂∗T
−Am β̂∗

−

)
for all m = 1 . . . M.

10: end for
11: Compute δ∗m = 1

J ∑J
j=1 δ∗m

(j) for all m = 1 . . . M.

Step 8 of the algorithm shows the main computational cost of the algorithm: solving the

normal equations. As mentioned before, this could be done by just running a regression of v∗
+

and v∗
− on X. This is a huge advantage of our method as it relies in common algorithms that

estimate linear regressions with a large number of fixed effects. There are many of these algo-

rithms in different software programs, so the implementation cost of our method is relatively

low.6

6We follow KSS and use the preconditioned conjugate gradient method in Matlab with a preconditioner de-
veloped by Koutis, Miller, and Tolliver (2011) that is optimized for two-way fixed effects regressions.
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Advantages of the bootstrap bias correction: We enumerate briefly the main advantages

of our bootstrap estimator; we explain with more detail afterwards. In short, our bootstrap

estimator is:

1. General: can use any real symmetric covariance matrix estimator.

2. Scalable: can compute corrections for different quadratic forms at the same time without

increasing the computational cost.

3. Flexible: can do the correction of any quadratic form; no need to create complicated ad-hoc

code for different corrections.

4. Easy to implement: it mostly relies on the estimation of least square regressions.

The spectral decomposition argument above explains why the bootstrap correction is gen-

eral: we can use it with any real symmetric covariance matrix estimator.

The bootstrap method is scalable to any number of corrections. Like we mentioned above,

the main cost of our method is to solve for the normal equations for every iteration in the

bootstrap. At the end of the iteration we need to compute the quadratic forms. In practice, the

cost of computing an additional quadratic form is negligible compared to the cost of running

the regression: once we pay the fixed cost of running the regression, computing more quadratic

forms comes at almost not cost. This opens the door to many more applications of interest that

were prohibitively costly before. For example, in the AKM context, one could do corrections for

different subsamples of the data, and explore how the moments change across different periods,

occupations, locations, etcetera.

The bootstrap correction is flexible compared to KSS: their method requires the computation

of an appropriate Am matrix for each correction. Our method can compute the outcome of

the quadratic forms without explicitly declaring Am. For example, besides correcting for the

covariance of workers and firms fixed effects, one could correct for other moments that reflect

labor market sorting, like the correlation between the worker fixed effect and the average fixed

effect of the coworkers, as proposed by Lopes de Melo (2018).

The method is easy to implement: the bootstrap mostly relies on running least square regres-

sions. Our method can take advantage from the continuous development of tools that increase

the estimation speed of high dimensional linear models. Even more, it is easy to adapt the
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method to use Generalized Least Squares instead of OLS; for example, it is straightforward to

adapt the bootstrap to use Weighted Least Squares.

Efficiency gains compared to alternative bootstraps: Using the bootstrap to correct for bi-

ases is ubiquitous in the literature. MacKinnon and Smith Jr (1998) propose a similar bootstrap

to correct for flat biases like the one considered here.7 For simplicity, let us abstract about the

decomposition of the variance estimator as the difference of two positive semi-definite matrices,

but all arguments follow easily in that case. In other words, let us have that V̂ = V̂+. MacK-

innon and Smith Jr (1998) propose building the bootstrapped dependent variable by using the

original estimate of β, y∗ = Xβ̂ + v∗, and use these new data (X, y∗) to estimate β̂∗
MS. Then, to

compute the quadratic objects β̂∗
MS(j)

T
Aβ̂∗

MS(j) for each bootstrap j and use them to calculate

a bias correction of the form:

δ∗MS =
1
p

p

∑
j=1

β̂∗
MS(j)

T
Aβ̂∗

MS(j)− β̂TAβ̂.

MS already note that one can estimate a flat bias correction by using any β̂ to generate y∗. In

our bootstrap method we use β̂ = 0. As shown by the proposition below, this choice has some

benefits in terms of the efficiency of the estimator.

Proposition 5 (Efficiency Gains). Let v∗ be a vector of independent random variables with E (v∗ |X, ε) =

0, E
(
(v∗)2

∣∣∣X, ε
)
< ∞, and E

(
(v∗)3

∣∣∣X, ε
)
= 0. Then, V

(
δ∗MS

∣∣X, ε
)
≥ V (δ∗ |X, ε).

Given that we use independent Rademacher entries r to form v∗ = Br, then the conditions

E (v∗ |X, ε) = 0 and E
(
(v∗)3

∣∣∣X, ε
)

= 0 are satisfied. The proposition tell us that choosing

β̂ = 0 to form the bootstrapped dependent variable reduces the variance of the bias correction.

Furthermore, if the estimator for the variance is unbiased, this means that our bootstrap esti-

mator is more efficient than the more traditional one as proposed by MacKinnon and Smith Jr

(1998).8

7Recall that a flat bias is one that does not depend on the parameters. The bias from the quadratic forms is flat
because the trace term in (3) is independent of β.

8The proposition only shows this for the case where the covariance matrix estimator is diagonal. We conjecture
this is also the case with clustered errors.
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2.1 Computation of B+ and B−: common examples

The bootstrap estimator owes its simple form to two properties: (i) the decomposition of the

covariance matrix as the difference of two positive semi-definite matrices, and (ii) the fact that

the bias is a linear function of the covariance matrix. These two properties allow us to express

the original bias, which is equal to a trace, as the difference of two traces.

To estimate these two traces, we first need to compute the matrices B+ and B−. Below, we

present three different examples of unbiased estimators of V based on different assumptions

about the error term, and we discuss the corresponding B+ and B− matrices for each case.

Example 1—Homoscedastic Errors: Consider the following covariance matrix estimator:

V̂ = σ̂I, σ̂ =
1

n − k

n

∑
i

ε̂2
i ,

where ε̂i = yi − ŷi is the OLS residual for the ith observation and I is the identity matrix.

When the errors are homoscedastic, this covariance estimator is unbiased with respect to the

covariance matrix of the unobserved errors.

This covariance matrix estimator is positive semi-definite: it has only non-negative eigen-

values, meaning Λ− = 0. Also, it is a diagonal matrix, so following the decomposition above

we then have that Q = I, and Λ+ = V̂ leading to B+ = (Λ+)
1/2 and B− = 0.

Example 2—Leave-one-out estimator: KSS use a diagonal covariance matrix estimator which

is unbiased when the errors are heteroscedastic. The diagonal entries are:

V̂ii =
yi ε̂i

1 − Pii
, (6)

where Pii is the leverage of observation i, defined as the ith diagonal entry of the projection

matrix P = X
(
XTX

)−1 XT.

V̂ is a diagonal matrix but not necessarily positive semi-definite. According to the spectral

decomposition we have that Q = I so V̂ = Λ+ − Λ−, where Λ+ contains the positive diagonal

entries of V̂ and Λ− the negative entries. We therefore have B+ = (Λ+)
1/2 and B− = (Λ−)

1/2.

12



Example 3—Leave-cluster-out estimator: This is a generalization of the leave-one-out covari-

ance matrix estimator. It was also proposed by KSS and studied in more detail by Anatolyev

(2021).

We introduce some notation to ease the exposition below. Assume we can divide the data

(y, X) into G mutually exclusive clusters, where the gth cluster has ng observations. This means

that n = ∑G
g=1 ng. Define as Xg a matrix of covariates for cluster g of dimension ng × k. Similarly,

define yg and εg as vectors of dimension ng.

Define as Pgg the principal minor of the projection matrix P where we keep the observations

that correspond to cluster g. If the data is rearranged such that all observations within a cluster

are adjacent, then Pgg would be the gth diagonal block of P. Without loss of generality, we will

assume the data is ordered that way.

In a similar way, define Mgg ≡ Ing − Pgg, where Ing is the identity matrix of dimension

ng × ng. We can now define the analogous of the leave-one-out residuals ε̂i/(1 − Pii) but for

clusters instead of an observation. Following Anatolyev (2021), the leave-cluster-out residual is

equal to:

ε̂LC
g = M−1

gg ε̂g.

Then, the leave-cluster-out symmetric estimator of variance for the gth diagonal block of V̂ is:

V̂gg =
1
2

(
yg

(
ε̂LC

g

)T
+ ε̂LC

g yT
g

)
. (7)

Clearly, the leave-cluster-out variance estimator is a generalization of the leave-one-out es-

timator of Example 2, which would correspond to all clusters having just a single observation.

Anatolyev (2021) shows that V̂gg is an unbiased estimator of the gth diagonal block of the co-

variance matrix V (ε |X).

Since the matrix V̂ is block diagonal, we can do the spectral decomposition (5) for each diag-

onal block V̂gg, corresponding to the different clusters g, thereby simplifying the computation.

This allows us to compute each block of B+ and B− separately for each cluster g. Moreover,

V̂gg is determined by the outer product yg

(
ε̂LC

g

)T
, and since these two vectors span a two-

dimensional subspace, the matrix V̂gg has at most two non-zero eigenvalues. Therefore, we

13



only need to compute two eigenvalues to do the spectral decomposition for each cluster. Also,

as shown in the proposition below, there is a closed-form expression for B+ and B− for each

cluster, simplifying their computation further.

Proposition 6 (Decomposition of leave-cluster-out covariance matrix). Let Bgg+ and Bgg− be the

gth diagonal block of B+ and B−, respectively, each of dimensions ng × ng. Also, let (v · w) be the inner

product of vectors v and w. Then, given vectors yg and ε̂LC
g , we have that:

Bgg+ =
√

λg+ × Qgg+, Bgg− =
√
|λg−| × Qgg−,

where the non-zero eigenvalues of V̂gg are

λg+ =
1
2

(
(ε̂LC

g · yg) +
√
(ε̂LC

g · ε̂LC
g )(yg · yg)

)
, λg− =

1
2

(
(ε̂LC

g · yg)−
√
(ε̂LC

g · ε̂LC
g )(yg · yg)

)
,

and the matrices Qgg+ and Qgg− have all columns equal to zero except their first columns, which are the

orthonormal eigenvectors of V̂gg that correspond to the eigenvalues λg+ and λg−, respectively. These

orthonormal eigenvectors are equal to the following eigenvectors, but normalized:

qg+ = ayg + ε̂LC
g , qg− = −ayg + ε̂LC

g ,

where

a ≡
√

(yg · yg)

(ε̂LC
g · ε̂LC

g )
.

3 Practical details when implementing the bootstrap

In this section, we discuss some practical details to implement the bootstrap method in three

cases. Each of these cases uses a different unbiased estimator of the covariance matrix, suit-

able for different situations: the standard covariance estimator for homoscedastic errors; the

leave-one-out estimator of Jochmans (2022) and KSS; and the leave-cluster-out estimator also

introduced by KSS and developed in more detail by Anatolyev (2021).
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Case 1—Homoscedastic errors: This is the simplest case. The bias correction under this as-

sumption on the errors was first proposed by Andrews et al. (2008). Gaure (2014) implements

an iterative method to estimate the bias under the homoscedastic assumption, but it is not scal-

able like ours.

Having estimated the variance of the error terms σ̂ as explained in Example 1, we need to

do several bootstraps where we need to simulate the vector r, get v∗ =
√

σ̂r, run regressions

of v∗ on X, and calculate the quadratic forms. Finally, taking the average across the estimated

quadratic forms gives the bias estimate.

Case 2—Heteroscedastic errors: The leave-one-out covariance matrix estimator is a diagonal

covariance matrix with entries described by equation (6) in Example 2 above. As some of these

entries are negative, we separate the negative entries from the non-negative ones to form the

B+ and B− matrices.

Using the leave-one-out covariance matrix estimator requires: (i) estimating the leverage of

each observation, and (ii) guaranteeing that the leverage of each observation is below 1 such

that the variance estimator of observation i V̂ii exists. We discuss their implementation below.

Case 3—Clustered errors: The leave-cluster-out variance estimator shares the same two com-

plications with the leave-one-out variance estimator: we need that the leave-cluster-out covari-

ance estimator exists, and we need to estimate the residual matrix M ≡ I − P.

In the following we discuss the sample selection required for the existence of the leave-one-

out and leave-cluster-out estimators and iterative procedures to estimate the leverages. We

end the section explaining how to add extra covariates to the linear model while keeping the

computational advantages of working with just two sets of fixed effects.

3.1 Existence of variance estimators: leave-one-out and leave-cluster-out

A key practical consideration in the leave-one-out and leave-cluster-out covariance estimation

is ensuring that the estimators exist. This requires selecting a subsample from the connected

set such that: (i) the leverages Pii are below 1 for the leave-one-out estimator, and (ii) Mgg is
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non-singular, as discussed by Anatolyev (2021), for the leave-cluster-out estimator.

Leave-one-out connected set. In the AKM context, having leverages below 1 requires leaving

out: (i) workers that appear only once in the sample as that observation completely pins down

the worker fixed effect; and (ii) observations that upon removing them would leave some firms

out of the connected set.9

Therefore, using the leave-one-out variance estimator in the AKM context requires a stronger

notion of connectivity than just using the connected set of firms: we need that each connected

firm is not only connected by the movement of one worker observation. KSS denote this set

of firms as the leave-one-out connected set.10 The leave-one-out connected set ensures that after

removing a single observation all the parameters from the model are identified.

Leave-cluster-out connected set. To make sure that Mgg is non-singular for all the clusters,

we need to compute a leave-cluster-out sample. The idea is similar to above: the sample is leave-

cluster-out estimable if upon removing one cluster from the sample all of the parameters are

still identified. To gain intuition of the different types of sample restrictions needed in this case,

we focus here on the clustering of errors at the match level. This is the leave-match-out case

considered by KSS which, again, requires a stronger notion of connectivity than the connected

set.

To guarantee that Mgg is non-singular for all the matches we need to remove: (i) workers

who only have one match; and (ii) matches whose removal from the sample would leave some

firms unconnected.

Sample selection algorithms. We provide algorithms to identify samples that are leave-cluster-

out estimable for any type of cluster, generalizing the type of clustering considered by KSS. For

cases where the clusters are specific to either firms or workers, we develop a fast sample selec-

tion algorithm using graph theory tools. This includes clustering at the observation or match

9Given the presence of both worker and firm fixed effects in the AKM model, only the difference between firm
fixed effects is identified. Therefore, the identification of the relative difference of firm fixed effects for two firms
requires having at least one worker moving between them. In practice, the largest connected set of firms is used
when estimating AKM models.

10The leave-one-out connected set is a smaller subset as it requires that more than one worker observation is
connecting two firms.
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level, as well as at the firm-occupation or worker-occupation level. Details are discussed in

Online Appendix A.

3.2 Variance estimation: leave-one-out

Obtaining the leverages Pii = Xi
(
XTX

)−1 XT
i suffer from the same computational cost as get-

ting the direct bias correction. However, the proposition below shows that we can do another

iterative procedure involving only linear regressions—akin to the bootstrap—to bypass the in-

version of XTX and get an estimator of the leverages.11

Proposition 7 (Leverage approximation). Let r be a random vector of dimension n with Rademacher

entries. Also, let r̂ be the fitted values after running a regression r on X with r̂i being the fitted value for

the ith observation. Then,

E
(

r̂2
i

∣∣∣X
)
= Pii, and E

(
(ri − r̂i)

2
∣∣∣X
)
= 1 − Pii.

This means that we can simulate a random vector of Rademacher entries, calculate the

square of the fitted values and of the residuals, and the sample average gives us an estima-

tor of the leverages Pii and 1 − Pii, as we define more precisely below.

Definition 6 (Estimators of Pii and Mii). Let r(j) be a random vector that corresponds to the jth

iteration and r̂(j) the fitted value of running a regression of r(j) on X. Similarly, define ri(j) and r̂i(j)

as the elements of r(j) and r̂(j) that correspond to observation i. Then, the estimators P̂ii and M̂ii are:

P̂ii ≡
1
J

J

∑
j=1

(r̂i(j))2 and M̂ii ≡
1
J

J

∑
j=1

(ri(j)− r̂i(j))2 .

While P̂ii and M̂ii are consistent estimators of Pii and Mii, they could still have values that do

not lie between 0 and 1. To avoid that, we follow Kline, Saggio, and Sølvsten (2021) and define

the following estimators:

11Kline et al. (2020) do the same procedure to estimate the leverages.
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Definition 7. The estimators Pii and Mii are:

Pii ≡
P̂ii

P̂ii + M̂ii
, and Mii ≡

M̂ii

P̂ii + M̂ii
.

As it is clear from above, these estimators satisfy the constraint Pii + Mii = 1, and as both

P̂ii and M̂ii are always non-negative, then Pii and Mii are always between 0 and 1.

With the leverages estimates in hand, we can compute the diagonal entries of the covariance

matrix as V̂ii = yi
(

Mii
)−1

ε̂i. In Online Appendix B we discuss how to correct for the bias

introduced by the non-linearity of
(

Mii
)−1.

3.3 Variance estimation: leave-cluster-out

When the number of covariates is large, we cannot explicitly compute Pgg or Mgg for the same

reason as for the leave-one-out estimator. We can instead estimate them using linear regressions

as suggested by the following proposition.

Proposition 8 (Approximation of Diagonal Blocks of P and M). Let r be a random vector of dimen-

sion n with Rademacher entries. Also, let r̂ be the fitted value after running a regression r on X. Denote

as rg and r̂g as the observations of vector r and r̂, respectively, that correspond to cluster g. Then,

E
(

r̂gr̂T
g

∣∣∣X
)
= Pgg, and E

((
rg − r̂g

) (
rg − r̂g

)T
∣∣∣X
)
= Mgg.

Akin to Proposition 7, this result tell us we can define the following estimators of Pgg and

Mgg:

Definition 8 (Estimates block-diagonals of P and M). Let r(j) be a random vector that corresponds

to the jth iteration and r̂(j) the fitted value of running a regression of r(j) on X. In a similar way, define

rg(j) and r̂g(j) as the vectors containing the observations of r(j) and r̂(j) that correspond to cluster g.

Then, the estimators P̂gg and M̂gg are defined as:

P̂gg ≡ 1
J

J

∑
j=1

r̂g(j)r̂g(j)T, and M̂gg ≡ 1
J

J

∑
j=1

(
rg(j)− r̂g(j)

) (
rg(j)− r̂g(j)

)T .
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The definitions for P̂ii and M̂ii are special cases of P̂gg and M̂gg when clusters have only one

observation, i.e. ng = 1 for all g.

The requirement for the existence of the leave-cluster-out variance estimator is that Mgg

is non-singular. As the proposition below shows, the estimator M̂gg inherits the singularity

of Mgg. So we should select the sample to avoid this singularity cases before attempting to

estimate Mgg.

Proposition 9 (Singularity of M̂gg). If Mgg is singular, then M̂gg is singular.

Just as the leverages Pii are trivially symmetric (the leverage is a scalar) and their values

must be between 0 and 1, the block-diagonal components of P and M share similar properties:

they are symmetric matrices with all their eigenvalues between 0 and 1. This is because the

projection matrix P is idempotent, which means that the eigenvalues of P are either 0 or 1. As

P is a real and symmetric matrix, its eigenvalues interlace the eigenvalues of its principal minor

matrices.12 This means that the eigenvalues of the block-diagonal matrix Pgg must be between

0 and 1, which implies the same for the matrix Mgg.

We make sure that the estimators of Pgg and Mgg are symmetric with eigenvalues between

0 and 1 by using the following estimators:

Definition 9. The symmetric estimators of Pgg and Mgg are defined as:

PS
gg ≡ L−1

gg P̂gg

(
L−1

gg

)T
, and MS

gg ≡ L−1
gg M̂gg

(
L−1

gg

)T
,

where Lgg is the lower triangular Cholesky factor of P̂gg + M̂gg, i.e. LggLT
gg = P̂gg + M̂gg.

Clearly, PS
gg + MS

gg = Ing , in line with the definition of Mgg ≡ Ing − Pgg and, as the proposi-

tion below shows, they have eigenvalues between 0 and 1.13

Proposition 10 (Eigenvalue properties of PS
gg and MS

gg). Assume M̂gg is non-singular. Then, the

eigenvalues of PS
gg lie within [0, 1) and the eigenvalues of MS

gg lie within (0, 1].

Using MS
gg we can compute the leave-cluster-out residuals ε̂LC

g and get V̂gg as shown in (7).

We show in Online Appendix C how to get the leave-cluster-out residuals without the explicit

inversion of any matrix but by solving systems of linear equations.
12This is the Eigenvalue Interlacing Theorem. A textbook treatment is found on p. 552 of Meyer (2000).
13In small-scale simulations, we found that MS

gg is a more efficient estimator of Mgg than M̂gg.
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3.4 Adding extra covariates

So far we have worked with the general linear model (2). However, the current code for the

bootstrap procedure focuses on a basic specification with only two-way fixed effects and no

additional covariates. This approach has significant computational advantages, which are de-

tailed in Online Appendix E.14

If researchers wish to include additional covariates, they can first regress out these covariates

in an initial estimation round, leaving a system that only contains the two-way fixed effects.

This is the default method used by KSS. To illustrate, consider the linear model:

y = Xβ + Wγ + ε,

where X represents the matrix of dummies for the two fixed effects, and W contains the extra

covariates. We can estimate this model using OLS, then define a new outcome variable ỹ ≡
y − Wγ̂, and proceed with the transformed model ỹ = Xβ + ε̃. This allows us to focus on the

corrections related to the two fixed effects.

However, if the researcher is interested in quadratic forms involving the additional covari-

ates, the procedure can be adjusted. For example, a labor economist might want to know how

much of the total variance in log wages is explained by workers’ education levels. If the di-

mension of γ is much smaller than β, the OLS estimator of γ will usually be very precise in

most applications. This means that any bias in the quadratic forms involving γ will likely be

negligible and can be safely ignored.15

We can then compute all the quadratic objects involving γ from a first regression and work

directly with them. In practice, all quadratic terms involving γ can be computed from the first

regression. For the education example, this means calculating the total variance in log wages,

the quadratic terms involving the education parameter γ, and then only applying corrections

to the quadratic forms involving β in the residualized system. Finally, these components can be

combined to perform a full variance decomposition.

14Briefly, these advantages are: i) with only two-way fixed effects, the normal equations can be represented as
a Laplacian system, for which fast algorithms exist (Koutis et al., 2011); and ii) leverages for workers who remain
with the same firm have a closed-form solution.

15For example, the covariance of Xβ̂ and Wγ̂ can be written as β̂TÃγ̂, where Ã is a non-squared matrix. Since γ̂

is typically very close (in probability) to γ, we have that E
(

β̂TÃγ̂
∣∣∣X
)
≈ E

(
β̂TÃγ

∣∣∣X
)
= E

(
β̂T
∣∣∣X
)

Ãγ = βTÃγ.
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4 Comparison with KSS

Both KSS and the bootstrap method rely on iterative procedures to estimate the bias, requiring

the solution of multiple linear systems. The key difference between our methods lies in the type

of linear systems being solved and the specific part of the trace term being approximated. KSS

make approximations tailored to the matrix A, which is specific to the moment being corrected.

As a result, their method requires solving as many systems as there are moments to be corrected.

In contrast, the bootstrap method estimates the leverages and two trace terms, limiting the

number of systems to solve to at most three. This makes the bootstrap method particularly

well-suited for applying multiple corrections to a given set of estimated fixed effects, such as

subgroup-specific corrections. We explain with more detail below.

Let sii(A) be the ith diagonal element of matrix ST
XASX. With a diagonal covariance matrix

estimator V̂, we can rewrite the direct bias correction (4) as

δ̂D = ∑
i

σ̂isii(A),

where σ̂i is the ith diagonal element of V̂. KSS estimate sii(A) by using

E

((
Xi

(
XTX

)−1
A f r

)2
∣∣∣∣∣X

)
= sii(A),

where A f AT
f = A, and r is again an iid random vector where each entry has mean zero and unit

variance. Then, they can simulate vectors r and solve the following linear system:

XTXz = A f r. (8)

With z in hand they just multiply it by Xi and square it. They do this a number of times and

take the sample average to get an estimate of sii(A).

The main computational burden of KSS’s method is solving the system of equations (8)

multiple times, which is analogous to solving the normal equations in our bootstrap method.

However, the system in their approach differs from ours: it is a function of the specific quadratic

form characterized by the matrix A.
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In some cases, such as performing a variance decomposition of an AKM model with worker

and firm fixed effects, one can reuse the estimates from the correction of the variance of worker

fixed effects and firm fixed effects to compute the correction of the covariance between worker

and firm fixed effects. When making a single set of corrections, KSS requires solving three

systems: one for the leverages, one for the worker fixed effects, and one for the firm fixed

effects. If additional corrections are needed, for example for different subsamples, the number

of systems to solve increases proportionally. Thus, KSS must solve at least three systems. By

contrast, our method solves at most three systems regardless of the number of corrections: one

for the leverages, and two for the matrices V+ and V−.

The key conceptual difference between the methods is that the bootstrap method approxi-

mates the entire trace term, whereas KSS approximates the diagonal terms sii(A). This concep-

tual difference allows the bootstrap method to efficiently handle multiple corrections. However,

it also reveals an advantage of KSS’s approach: it can be easily adapted to different dependent

variables y, as estimating sii(A) only depends on A and X. For example, Lachowska, Mas,

Saggio, and Woodbury (2023) estimate AKM models with hours and wages as dependent vari-

ables. In such cases, one could estimate sii(A) once and compute an estimate of the direct bias

correction for both wages and hours by adjusting the variance estimates σ̂i.

In the end, the choice between KSS and the bootstrap method depends on the specific ap-

plication. If there are more corrections than dependent variables, then it is better to use our

bootstrap correction. If the opposite is true, then it is better to use KSS.

4.1 Speed and accuracy: KSS vs bootstrap

We compare our method to KSS in terms of both speed and accuracy. To do so, we simulate

labor market data based on the model specified in (1), and do a simple variance decomposition

and their corrections. This exercise is the most beneficial for KSS as both their method and the

bootstrap method have to solve only three systems of equations per iteration.

We apply the leave-one-out covariance matrix estimator for both methods. To increase com-

parability, we adopt the same data selection procedure as KSS (leaving out the worker) to ensure

that all leverage values are less than one, i.e., Pii < 1 ∀i. Although this sample-selection pro-

cedure is more restrictive than necessary, it ensures the sample meets this requirement. Online
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Table 1: Monte Carlo simulations. Heteroscedastic errors

MSE×10,000 Observation Match

Plug-in Bootstrap KSS Bootstrap KSS

var(Worker) 2,036.592 0.088 0.086 0.100 0.103
var(Firm) 605.942 0.312 0.312 0.317 0.324
cov(Worker, Firm) 528.039 0.107 0.106 0.116 0.122

Sample Selection Worker Worker Worker Worker Worker
Clustering Level Obs Obs Match Match
Time (sec) 265 585 240 560

Notes: Simulated labor market with 5,266,714 observations. The table shows the Mean Squared Errors (MSE) of
the different quadratic objects multiplied by 10,000. Plug-in: uncorrected; Bootstrap: bootstrap-corrected; KSS:
corrected using KSS. var(Worker): variance of worker fixed effects (θ), var(Firm): variance of firm fixed effects (ψ),
cov(Worker, Firm): covariance between worker and firm fixed effects. At the bottom, Sample Selection: selection
criterion for the leave-one-out connected set; Clustering Level: clustering level of the covariance matrix estimator
of the error terms; Time (sec): time in seconds. We do 300 iterations\bootstraps for the corrections.

Appendix A offers a detailed discussion of less restrictive data selection procedures that also

satisfy the requirement.

In our simulations, the sample size is approximately 5 million observations per simulation,

with an average of 3 movers per firm and 12 employees per firm. Both methods utilize the

preconditioned conjugate gradient method in Matlab to solve the linear systems. We impose

the same tolerance level for convergence and do 300 iterations for each method.16

Table 1 presents the results for different assumptions about the clustering level of the co-

variance matrix of the error terms. Columns under Observation assume heteroscedasticity with

clustering at the observation level, while the columns under Match assume that the errors are

clustered at the match level. We measure accuracy by reporting the Mean Squared Error (MSE)

multiplied by 10, 000. As expected, both methods reduce the MSE with respect to the plug-in

estimator. Comparing the Bootstrap and KSS estimators within clustering assumption, the MSEs

of both methods are identical to six digits. The MSE of Observation columns are smaller as the

clustering level of the true error terms is the observation.

The bootstrap method is overall faster than KSS as it takes less than half of the running time.

This shows that even in the case where both methods need to solve three systems of equations

16Matlab codes and working examples are in https://github.com/mazkarate/bias_correction.
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per iteration, our bootstrap method is faster than KSS.17

5 Applications using French employer-employee data

In this section, we show the advantages of our method through four applications. First, we

do a standard AKM variance decomposition of log wages for the full sample, using different

assumptions about how the errors are clustered. Second, we examine the relationship between

sorting and the size of labor markets. To do this, we do corrections at the local labor market

level. Specifically, we analyze two aspects of sorting: its direction and intensity. For direction,

we use the correlation between worker and firm fixed effects. For intensity, we look at the cor-

relation between worker fixed effects and the average fixed effects of their coworkers (Lopes de

Melo, 2018). Third, we do a variance decomposition exercise by gender. Finally, we analyze

how the components of an AKM variance decomposition change over the life cycle.

Our specification follows (1), with the addition of controls that we residualize before apply-

ing the corrections. Using the corrected estimates, we then do variance decompositions for each

group g, where the groups vary depending on the application, as follows:

var (log wit |g) = var (θi |g) + var
(

ψJ (i,t)

∣∣∣g)+ 2cov
(

θi, ψJ (i,t)

∣∣∣g)+ var (εit |g) .

This equation decomposes the variance of log wages into components corresponding to worker

fixed effects (θi), firm fixed effects (ψJ (i,t)), their covariance, and the residual variance.

Before presenting these applications, we briefly introduce the data below. Additional details

on how the sample was constructed can be found in Online Appendix D.

5.1 Data

We follow Babet et al. (2022) to construct a panel using French administrative data from the

DADS Base Tous Salariés (BTS). Each year, the BTS provides a cross-sectional database with in-

formation on all jobs held by each worker in both the current and previous year. However, since

17We have optimized the correction for the simple case with only two fixed effects—which is also the default
specification in KSS’s code—leading to significant speed gains. Online Appendix E provides more details. In
principle, these improvements could be incorporated into KSS’s code, which we expect would also improve their
running time.
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worker identifiers change annually, linking the data across years is not straightforward. We ap-

ply the algorithm from Babet et al. (2022) to create a panel by matching identifiers based on

observable characteristics across overlapping years.18 Additionally, we group establishments

within the same commuting zone to define firm identifiers.

Our analysis covers the years 2009 to 2019, divided into two periods: 2009-2014 and 2015-

2019. The sample is restricted to private sector workers aged 20 to 60 in metropolitan France.

We include only each worker’s main job for the year, excluding cases with imputed or missing

hours worked.

The main text focuses on the 2015-2019 sample for most exercises. The Supplemental Mate-

rial provides the corresponding tables and figures for the 2009-2014 sample.

Labor markets are defined as combinations of commuting zones and 2-digit occupations.

The dependent variable is the log of hourly wages, with quadratic and cubic age terms, as well

as year fixed effects, included as controls.19

5.2 Basic AKM decomposition with different clustering

In this section, we conduct a variance decomposition of the AKM model, which is a standard

exercise in the literature. The novelty here is applying corrections using different assumptions

about error clustering.

Table 2 presents both the plug-in and corrected estimates using the bootstrap and KSS. We

perform several bootstrap corrections with varying sample selection criteria to ensure the ex-

istence of the leave-one-out variance estimator for different levels of clustering. In column (1),

we use the entire connected set with the assumption of homoscedastic errors. In column (2),

we select the sample using a leave-observation-out strategy and assume heteroscedasticity for

the error terms. In column (3), clustering is done at the match level and sample is selected

using the leave-match-out strategy. In column (5), we apply the stricter leave-worker-out se-

lection method used by KSS.20 Column (4) reflects a case where the cluster is defined at the

worker-occupation level, leading to a smaller sample compared to the other cases.21

18See Section 1 and Appendix C of their paper for further details.
19We remove the linear term of the polynomial to avoid collinearity with the year and worker fixed effects.

Following Card et al. (2018), we the cubic polynomial is flat at age 40.
20Online Appendix A presents more details on the difference between these data selection methods.
21We use 4-digit occupation codes for the clustering.
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Table 2: Application. Plug-in vs corrected estimates

Bootstrap

Plug-in (1) (2) (3) (4) (5) KSS

var(y) 0.135 0.136 0.135 0.135 0.136 0.135 0.135
var(Worker) 0.095 0.091 0.088 0.085 0.085 0.086 0.088
var(Firm) 0.016 0.016 0.014 0.013 0.013 0.013 0.012
cov(Worker, Firm) 0.006 0.007 0.008 0.010 0.009 0.010 0.010
corr(Worker, Firm) 0.162 0.175 0.229 0.293 0.279 0.291 0.320

Sample Selection Match None Obs Match Worker×Occ Worker Worker
Clustering Level Obs Match Worker×Occ Match Match

Observations 53,340,591 56,713,306 53,984,000 53,340,591 51,456,580 52,350,422 52,350,422
Workers 15,028,603 16,130,300 15,155,610 15,028,603 14,522,368 14,685,248 14,685,248
Firms 842,333 1,384,988 932,785 842,333 702,639 810,403 810,403
Time (min) 70 151 133 149 133 303

Notes: Sample 2015-2019. Plug-in: uncorrected estimates; Bootstrap: bootstrap-corrected estimates; KSS: corrected
estimates using KSS. var(y): variance of residualized log hourly wages; var(Worker): variance of worker fixed effects
(θ); var(Firm): variance of firm fixed effects (ψ); cov(Worker, Firm): covariance between worker and firm fixed effects;
corr(Worker, Firm): correlation between worker and firm fixed effects. At the middle, Sample Selection: data selection
procedure for the leave-one-out connected set: None takes the connected set, Obs leaves the observation out, Match
leaves the worker-firm match out, Worker×Occ leaves the worker-occupation out, Worker leaves the worker out;
Clustering Level: clustering level of the covariance matrix estimator of the error terms. At the bottom, Observations:
person-year observations; Workers: number of workers; Firms: number of firms; and Time (min): time in minutes.
We do 300 iterations\bootstraps for the corrections.

To minimize the loss of observations during sample selection, we follow KSS and assume

that observations that are not leave-cluster-out estimable but part of the connected firm set are

clustered at the observation level. For example, if clustering is at the match level, workers who

stay with the same firm are not leave-cluster-out estimable. In such cases, we treat their cluster

as being at the observation level.

Focusing on the results assuming clustering at the match level, Table 2 shows that, as ex-

pected, the plug-in estimates underestimate covariance and overestimate variances. After cor-

recting for the limited mobility bias, the correlation between worker and firm fixed effects in-

creases significantly, from 0.162 to 0.293 (column (3)). The values are slightly lower when using

clusters at the worker-occupation level. Comparing the bootstrap estimates in column (5) with

the KSS estimates in column (6), we see a difference in the corrected variance estimates, leading

to a slightly higher correlation estimate for KSS of 0.32 versus 0.29 for the bootstrap-corrected

correlation. The results are similar for the 2009-2014 period which can be found on the Supple-
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mental Material.

Comparing the computational time across exercises on the last row of Table 2, the bootstrap

corrections are faster than KSS taking less than half the time. This time improvement is similar

to what we found in Monte Carlo simulations.

The specification in column (1) shows the lowest correlation among the corrected estimates,

followed by the estimate in column (2). The corrected correlation estimates remain quite similar

when clustering is allowed at the match or worker-occupation level. In the following exercises,

we do the corrections assuming clustering at the match level.

5.3 Sorting across French labor markets

In this section we study the relationship between sorting and labor market size. We follow a

similar approach to Dauth et al. (2022), who use German data to test a well-known idea in urban

and labor economics: larger markets lead to better matches. Dauth et al. (2022) find a positive

relationship between the correlation of worker and firm fixed effects and city population. To

address the limited mobility bias, they apply the KSS correction for each city, running an AKM

model separately for each one. However, this approach loses information from workers moving

across cities. Our method avoids this issue by estimating the model on the entire sample and

then applying corrections for each labor market.22

Moreover, Dauth et al. (2022) suggest that a more precise definition of local labor markets is

city-occupation pairs rather than entire cities, since “workers looking for a job, and plants looking

for an employee, are likely to search within specific occupations.”23 We agree with this view, which is

why we define labor markets as combinations of commuting zones and 2-digit occupations.24

22Pérez et al. (2023) do the same exercise as Dauth et al. (2022) but using Mexican data. They also find a positive
gradient between the worker-firm fixed effect correlation and labor market size. Heath Milsom and Hou (2024) do
a variance decomposition of an extended AKM using job (firm-occupation) fixed effects to the commuting zone
population. In contrast with Dauth et al. (2022), Heath Milsom and Hou (2024) do the corrections using with the
whole sample. Using similar French data like us, they find that the covariance between worker-job fixed effects is
increasing in population.

23Page 1481 of their paper.
24Dauth et al. (2022) also examine the relationship between sorting and labor market size defined as city-

occupation pairs (see Figure 12 of their paper). However, they do not correct for limited mobility bias in this
case.
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Sorting Direction. Figure 1 illustrates the relationship between the correlation of worker fixed

effects (θ) and firm fixed effects (ψ) with local labor market size.25 We use two measures of local

labor market size: the number of workers and the number of firms. The plots on the left display

the plug-in estimates of the correlation, suggesting that larger labor markets exhibit slightly

better within-market sorting compared to smaller ones. While the correlation between worker

and firm fixed effects increases with market size, the slope remains modest. In contrast, the

plots on the right show estimates corrected for limited mobility bias using the leave-match-out

variance estimator. After correcting for the bias, a clear positive gradient emerges, suggesting

that larger labor markets offer better matching opportunities.26

Table 3 complements these results by presenting the OLS estimated slope coefficients of a

regression between the worker-firm fixed effects correlation and the logarithm of labor market

size. Again, we use the same two measures of labor market size: number of workers and

number of firms. The Plug-in column presents the estimated slopes using the plug-in estimates,

where the gradients are positive but modest across all labor market size measures. However,

these gradients almost triple once we account for the bias as shown in the Bootstrap columns.

Online Appendix F shows that these patterns remain robust when defining local labor mar-

kets using combinations of commuting zones and 4-digit occupations, instead of 2-digit occu-

pations. It also shows that, when labor markets are defined by commuting zones alone—as

done in previous studies—the relationship between market size and sorting direction weakens

when using corrected estimates. Further details are provided in the Online Appendix.

Time Comparison with KSS. We compare the computational time of the bootstrap and KSS

corrections per groups in the application by estimating corrections per labor market. The entire

bootstrap correction process was completed in 2.7 hours. In contrast, a researcher using KSS

would need to run an AKM regression for each labor market. While running each regression

individually would be faster due to fewer parameters in each model, this process would need

25We only use markets with more than 50 workers and five firms and excluded markets who gave corrected
estimates for the correlation below −1 or above 1.

26While we show that failing to apply corrections leads to biased OLS estimates, another source of bias arises
from reverse causality—where better sorting can lead to larger markets. Leknes et al. (2022) use historical mining
locations in Norway as an instrument for market size, using the plug-in estimates for the correlations. Their IV
estimates reveal a downward bias in the OLS estimates (see Table 2 in their paper), surprising as reverse causality
suggests an upward bias. However, limited mobility bias may explain why the IV estimate exceeds the OLS esti-
mate, similar to how our OLS estimate using corrected correlations is greater than when using plug-in correlations.
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Figure 1: Sorting direction and labor market size: CZ × 2-digit occupations
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Notes: Binned scatter plots between sorting direction—the correlation between worker (θ) and firm (ψ) fixed ef-
fects—and labor market (combination of commuting zone and 2-digit occupations) size. x-axis: two different
measures of size by the logarithm of the (i) number of workers for the top figures, and (ii) number of firms for the
bottom figures. y-axis: on the left, plug-in estimates, on the right, bias-corrected estimates.

Table 3: Gradient of sorting on labor market size: CZ × 2-digit occupations

Sorting Direction Sorting Intensity

Plug-in Bootstrap Plug-in Bootstrap

log No. Workers 0.0098 0.0315 -0.0009 -0.0125
(0.0015) (0.0025) (0.0012) (0.0019)

log No. Firms 0.0118 0.0292 0.0039 -0.0018
(0.0018) (0.0031) (0.0015) (0.0023)

Number of Markets 5,688 5,687

Notes: Slope coefficients of an OLS regression of sorting direction—worker-firm correlation—, and sorting
intensity—worker-coworker correlation—with different measures of labor market (combination of commuting
zone and 2-digit occupations) size. Standard errors in parenthesis. Plug-in: slope estimate using plug-in esti-
mates. Bootstrap: slope estimate using bootstrap-corrected estimates with the leave-match out covariance matrix
estimator.
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to be repeated thousands of times. To estimate how long this would take, we calculated how

many markets could be corrected using KSS within the same time frame as the bootstrap. We

found that KSS could correct 690 markets, which is 12.13% of the total. Extrapolating from this,

it would take more than 22 hours to complete the same exercise using KSS.

Moreover, there would be significant information loss from excluding observations of work-

ers who were employed outside their local labor market in other periods.

Sorting Intensity. The use of the AKM model to measure sorting has been debated. In a sim-

ple matching model, Eeckhout and Kircher (2011) show that wage data alone cannot identify

the sign of sorting, but it can be used to measure the intensity of sorting. They also show that the

AKM correlation between worker and firm fixed effects is not necessarily informative about

sorting intensity. However, Lopes de Melo (2018) argues that the correlation between worker

fixed effects (θ) and coworkers fixed effects (θ̄) from the AKM model is informative regarding

the strength of sorting. We therefore examine the relationship between this correlation and

labor market size.27

Figure 2 and the last four columns of Table 3 present the results. While Figure 1 and the

Sorting Direction columns of Table 3 show that sorting is more positive in larger markets, Figure

2 and the last four columns reveal that sorting intensity is lower in these markets, or at best, not

significant.

Using corrected estimates reduces the gradient between sorting intensity and market size,

even reversing its sign when using the number of firms to define market size. Online Appendix

F shows that these patterns on sorting intensity are robust when defining labor markets using

combinations of commuting zones and 4-digit occupations. However, when labor markets are

defined only by commuting zones, the result is reversed: the relationship between sorting in-

tensity and market size is greater when using corrected estimates. This is in line with Dauth

27In the models of Eeckhout and Kircher (2011) and Lopes de Melo (2018), wages are not necessarily monotonic
with respect to firm productivity. This implies that the estimated fixed effects may not reflect the true productivity
types of firms, which could be problematic if we aim to identify production complementarities between firms
and workers. However, if we are only interested in understanding sorting patterns based on wages, the AKM
model remains informative. As noted by Bartolucci et al. (2018): "The correlation from Abowd, Kramarz, and
Margolis’s (1999) methodology is informative on the extent to which high-wage workers sort into high-paying
firms. Whenever worker and firm fixed effects are increasing in their unobservable productive characteristics, this
correlation is also informative about sorting by latent productivity."
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Figure 2: Sorting intensity and labor market size: CZ × 2-digit occupations
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Notes: Binned scatter plots between sorting intensity—the correlation between worker fixed effects (θ) and the
average of coworkers (θ̄)—and labor market (combination of commuting zone and 2-digit occupations) size. x-
axis: two different measures of size by the logarithm of the (i) number of workers for the top figures, and (ii)
number of firms for the bottom figures. y-axis: on the left, plug-in estimates, on the right, bias-corrected estimates.

et al. (2022) that report similar findings with uncorrected correlations.28

From these two exercises on sorting direction and intensity, we can conclude that, using a

more granular definition of labor markets, larger markets may exhibit better matches—where

high-wage workers are employed by high-wage firms—but the link between market size and

sorting intensity is weak or even negative, indicating reduced worker segregation in larger

markets.

28See Table B.1 of their Online Appendix.
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Table 4: AKM decomposition: gender differences over time

2009-2014 2015-2019

Plug-in Bootstrap Plug-in Bootstrap

Women Men Women Men Women Men Women Men

var(y) 0.123 0.148 0.123 0.148 0.119 0.144 0.119 0.144
var(Worker) 0.081 0.106 0.074 0.097 0.081 0.104 0.072 0.093
var(Firm) 0.017 0.018 0.014 0.014 0.016 0.017 0.012 0.013
cov(Worker, Firm) 0.007 0.007 0.010 0.010 0.006 0.007 0.009 0.010
corr(Worker, Firm) 0.180 0.152 0.321 0.258 0.153 0.157 0.300 0.279

Sample Selection Match Match Match Match Match Match Match Match
Clustering Level Match Match Match Match

Observations 29,335,213 39,469,810 29,335,213 39,469,810 24,255,509 29,085,082 24,255,509 29,085,082
Workers 6,870,591 8,908,312 6,870,591 8,908,312 6,753,534 8,284,846 6,753,534 8,284,846
Firms 816,979 831,326 816,979 831,326 723,826 733,848 723,826 733,848

Notes: Sample 2009-2014 and 2015-2019. Plug-in: uncorrected estimates; Bootstrap: corrected estimates. var(y):
variance of residualized log hourly wages; var(Worker): variance of worker fixed effects (θ); var(Firm): variance
of firm fixed effects (ψ); cov(Worker, Firm): covariance between worker and firm fixed effects; corr(Worker, Firm):
correlation between worker and firm fixed effects. At the middle, Sample Selection: data selection procedure for
the leave-one-out connected set leaves the match out; Clustering Level: clustering level of the covariance matrix
estimator of the error terms. At the bottom, Observations: person-year observations; Workers: number of workers;
Firms: number of firms; and Time (min): time in minutes. We do 300 bootstraps for the correction.

5.4 Gender differences in AKM decomposition

We conduct a basic AKM decomposition conditional on gender to explore differences across

men and women within and across time periods. This analysis also serves to evaluate the

validity of the common assumption that limited mobility bias remains constant across groups

and/or over time.

Table 4 presents the results for 2009-2014 and 2015-2019. Focusing on the results for 2009-

2014, the plug-in estimates of the correlation between worker and firm fixed effects suggest that

both high-wage men and women sort similarly into high-wage firms, with women showing

slightly higher sorting. However, the corrected estimates in Table 4 reveal a larger difference

than indicated by the plug-in estimates, with women having a higher correlation than men.

This pattern continues in 2015-2019, where the gap between plug-in and corrected estimates is

even more pronounced. While the plug-in estimates suggest that men have a slightly higher

correlation than women, the corrected estimates show that women actually have the higher

correlation.

Looking now at the evolution of the correlation over time, the bias-corrected estimates of
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Table 4 show that the correlation has decreased from 2009-2014 to 2015-2019 for women passing

from 0.321 to 0.3 while it increased for men from 0.258 to 0.279. The reasons for this shift are

unclear and exploring them in detail is beyond the scope of this paper.

It might be tempting to compare the relative magnitudes of the plug-in correlation estimates

and assume that the bias affects both estimates similarly within and across periods. However,

our analysis shows that this assumption is not always valid, as the correction can change the

relative estimates for men and women within periods and across time.

5.5 Wage decomposition over the life cycle

In this final application, we study life cycle patterns on worker-firm sorting and on the impor-

tance of the different elements of a variance decomposition. We do this by correcting estimates

for each age group. This exercise highlights the advantage of estimating the model using the

entire sample. If we were to split the sample by age and perform the corrections separately,

it would be impossible to identify the worker fixed effects, since there is only one observation

per worker per year. By using the full sample, we overcome this limitation and can still make

age-specific corrections.

Figure 3 shows the results. Panels (a)-(c) present the plug-in and bootstrap-corrected esti-

mates of the variance decomposition. Panels (a) and (b) show that the variance of worker and

firm fixed effects increase with age, though the plug-in estimates are overestimated, with the

gaps staying constant over the life cycle. Panel (c) shows the worker-firm covariance also rises

with age, but the gap between plug-in and corrected estimates widens early and again later in

life. Panel (d) shows that most of the sorting improvement occurs before age 30, after which the

worker-firm correlation remains fairly flat, with slight differences in trends between the plug-in

and corrected estimates. This contrasts with Borovičková and Shimer (2017), who find that the

correlation between worker and job type increases consistently with age.29

Panels (e) and (f) present variance decompositions by age for the bootstrap-corrected es-

timates.30 Panel (e) shows the decomposition in levels where it is clear that the variance of

29See Figure 3 in their paper.
30We restrict the sample to individuals aged 22 to 59. This is because corrected correlations were negative for

ages below 22, and there is a large increase in the variance of log wages at age 60, which is also observed in the
2009-2014 sample.
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Figure 3: Life cycle patterns
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Notes: Sample 2015-2019. x-axis: age. Panels (a)-(d) show plug-in and bootstrap-corrected estimates. Panels show:
(a) variance of worker effects; (b) variance of firm effects; (c) covariance of worker-firm effects; (d) correlation of
worker-firm effects; bootstrap-corrected variance decompositions (e) in levels, (f) as explained shares.
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residualized log hourly wages is increasing over the life cycle. This is consistent with find-

ings from Lemieux (2006) and Heathcote, Storesletten, and Violante (2005) who, among others,

document an increasing wage inequality over the life cycle related to experience or age. Panel

(f) presents the decomposition as explained shares, showing that worker fixed effects are the

primary driver of wage inequality over the life cycle. Initially, they explain only 21% of wage

inequality, but by the end of the working age, they account for 71%. The share explained by

the worker-firm covariance closely follows the corrected correlation, rising before age 25 and

remaining steady with a slight U-shape over the life cycle. In contrast, the variance of firm

effects and the residual variance decline in importance along the life cycle.

In summary, differences in worker fixed effects account for most of the variation in (residual)

wages across the life cycle. To our knowledge, no other paper has demonstrated this result. This

finding also suggests that using very long panels in AKM regressions—while keeping one fixed

effect per worker for the entire sample—may be a wrong assumption.

6 Conclusion

In this paper, we propose a computationally feasible bootstrap method to correct for the small-

sample bias found in all quadratic forms in the parameters of linear models with a very large

number of covariates, such as in typical AKM applications. We show using Monte Carlo simu-

lations that the method corrects the bias and is faster than KSS in simple AKM decompositions.

The main advantage of our approach is that it allows to increase the number of moments

to correct without increasing significantly the computational costs, and allows for different as-

sumptions on the error term.

The application using French labor market data shows that the bootstrap correction is useful

to evaluate the components of variance decompositions per subgroups, where previous meth-

ods would impose a high time burden to do it.
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APPENDIX

Proofs

Proof of Proposition 1: By the linearity of the trace and expectation operators we have that

E
(

δ̂D

∣∣∣X
)
= E

(
tr
(

ST
XASXV̂

∣∣∣X
))

= tr
(

ST
XASXE

(
V̂
∣∣∣X
))

= tr
(

ST
XASXV (ε |X)

)
= δ.

Proof of Corollary 1:

E (φ̂ |X) = φ − E
(

δ̂D

∣∣∣X
)
+ δ = φ − δ + δ = φ.

Proof of Proposition 2: The OLS estimator is β̂∗ =
(
XTX

)−1 XTv∗. As E (v∗ |X, ε) = 0, then

we have that E
(

β̂∗
∣∣∣X, ε

)
= 0. Then, using the formula for the expectation of quadratic forms

we get:

E
(

β̂∗T
Aβ̂∗

∣∣∣X, ε
)
= tr

(
AV

(
β̂∗
∣∣∣X, ε

))
= tr

(
ST

XASXV (v∗ |X, ε)
)
= tr

(
ST

XASXV̂
)
= δ̂D,

where the second equality we use V
(

β̂∗
∣∣∣X, ε

)
= SXV (v∗ |X, ε)ST

X and the cyclical property

of the trace. The third equality follows by the definition of v∗ where V (v∗ |X, ε) = V̂.

Proof of Proposition 3: First, given the decomposition of V̂ = V̂+ − V̂− and the linearity of

the trace operator, we have that

δ̂D = tr
(

ST
XASXV̂

)
= tr

(
ST

XASXV̂+

)
− tr

(
ST

XASXV̂−
)

.

As E (v∗
+ |X, ε) = 0 and E (v∗

− |X, ε) = 0, then we have that E
(

β̂∗
+

∣∣∣X, ε
)
= 0 and E

(
β̂∗

−

∣∣∣X, ε
)
=

0. Then, as with Proposition 2 we have:

E
(

β̂∗T
+Aβ̂∗

+

∣∣∣X, ε
)
= tr

(
ST

XASXV̂+

)
, and E

(
β̂∗T

−Aβ̂∗
−

∣∣∣X, ε
)
= tr

(
ST

XASXV̂−
)

.
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Proof of Proposition 4: Unbiased. Conditional on X and ε, the expectations of δ∗ is:

E (δ∗ |X, ε) =
1
J

J

∑
j=1

E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X, ε

)
− 1

J

J

∑
j=1

E
(

β̂∗
−(j)

T
Aβ̂∗

−(j)
∣∣∣X, ε

)
=

1
J

J

∑
j=1

[
E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X, ε

)
− E

(
β̂∗

−(j)
T

Aβ̂∗
−(j)

∣∣∣X)]
=

1
J

J

∑
j=1

δ̂D = δ̂D.

Consistent. Fix n and k. Let J −→ ∞. Using the two components of the difference of averages

from the definition of δ∗, we have that:

1
J

J

∑
j=1

β̂∗
+(j)

T
Aβ̂∗

+(j) a.s.−−→ E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X, ε

)
, and

1
J

J

∑
j=1

β̂∗
−(j)

T
Aβ̂∗

−(j) a.s.−−→ E
(

β̂∗
−(j)

T
Aβ̂∗

−(j)
∣∣∣X, ε

)
,

as each quadratic form is iid with defined expectation. Then, δ∗
a.s.−−→ δ̂D.

Proof of Corollary 2: Using the law of iterated expectations we have:

E (δ∗ |X) = E (E (δ∗ |X, ε) |X) = E
(

δ̂D

∣∣∣X
)
= δ,

where we used Proposition 4 in the second equality and the assumption E
(

V̂
∣∣∣X
)
= V (ε |X)

in the last equality.

Proof of Proposition 5: We have that for bootstrap j,

β̂∗
MS(j)

T
Aβ̂∗

MS(j) = β̂TAβ̂ + v∗(j)TST
XASXv∗(j) + 2v∗(j)TST

XAβ̂.

We have that

V (δ∗MS| X, ε) =
1
J

V
(

β̂∗
MS(j)

T
Aβ̂∗

MS(j)
∣∣∣ X, ε

)
.

Let the matrix ST
XASX ≡ Z, with elements (i, j) equal to zi,j. Also, let the vector ST

XAβ̂ ≡ w
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with element k equal to wk. We will ignore the index j for clarity. Then,

cov
(

v∗TZv∗, 2v∗Tw
∣∣∣X, ε

)
= E

((
n

∑
i=1

n

∑
j=1

zi,jv∗i v∗j

)(
n

∑
k=1

wkv∗k

) ∣∣∣∣∣ X, ε

)
,

where we use the fact that E
(
v∗i
∣∣ X, ε

)
= 0. Then,

E

((
n

∑
i=1

n

∑
j=1

zi,jv∗i v∗j

)(
n

∑
k=1

wkv∗k

) ∣∣∣∣∣ X, ε

)
=

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

zi,jwkE
(

v∗i v∗j v∗k
∣∣∣ X, ε

))
= 0,

where we use that the bootstrap errors are independent across observations and the fact that

E
(
(v∗i )

3
∣∣ X, ε

)
= 0.

This means that:

V (δ∗MS| X, ε) =
1
J

V
(

v∗TST
XASXv∗

∣∣∣X, ε
)
+

4
J

V
(

v∗TST
XAβ̂

∣∣∣X, ε
)

.

The expression above can be rewritten as:

V (δ∗MS| X, ε) = V (δ∗| X, ε) +
4
J

V
(

v∗TST
XAβ̂

∣∣∣X, ε
)
≥ V (δ∗| X, ε) .

Before proving Proposition 6, let us introduce the following auxiliary Lemma.

Lemma 1. Let v and w be two vectors. Let (v · w) be the inner product of v and w. Denote the matrix
A ≡ vwT + wvT. Then, the non-zero eigenvalues of A are equal to

λ = (v · w) ±
√
(v · v)(w · w),

with corresponding eigenvectors

u = ±av + w, and a =

√
(w · w)

(v · v)
.

Proof. Let u be an eigenvector of A associated to a non-zero eigenvalue λ. Then u is in the
subspace of v and w. This means that u = av + bw for some scalars a and b. Then we have that:

Au = A (av + bw) = aAv + bAw.
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Developing Av and Aw and using the fact that Au = λu we get

Au = a [(v · w)v + (v · v)w] + b [(w · w)v + (v · w)w]

= [a(v · w) + b(w · w)] v + [a(v · v) + b(v · w)]w
= λ [av + bw] .

The last equality implies a system of two equations with two unknowns. This system can be
represented in matrix form as:(

(v · w) (w · w)
(v · v) (v · w)

)
︸ ︷︷ ︸

B

(
a
b

)
= λ

(
a
b

)
.

This is an eigensystem and shows that the non-zero eigenvalues of A are the eigenvalues of the
matrix B. Also, the eigenvectors of B determine the values of the scalars a and b. Finding the
roots of the characteristic polynomial of B gives us λ = (v · w) ±

√
(v · v)(w · w). Finally, we

can normalize b = 1, and to find a we solve the following equation for each eigenvalue:

(v · w)a + (w · w) = λa.

The solution is a = (w·w)
λ−(v·w)

. Substituting for each value of the two eigenvalues and simplifying
gives the final result.

Proof of Proposition 6: Let v ≡ ε̂LC
g and w ≡ 1

2 yg. Then by Lemma 1 we get the result.

Proof of Proposition 7: First note that the fitted value for observation i after running a regres-

sion of r on X is r̂i = Xi
(
XTX

)−1 XTr, where Xi correspond to the ith row of X. Then,

E
(

r̂2
i

∣∣∣X
)
= Xi

(
XTX

)−1
XTE

(
rrT
)

X
(

XTX
)−1

XT
i = Xi

(
XTX

)−1
XT

i = Pii,

where we used the fact that E
(
rrT) = I.

Now, let 1i be a vector of length n of zeros everywhere except for the ith observation. Then,

we do something similar for the squared residuals:

E
(
(ri − r̂i)

2
∣∣∣X
)
= E

(
r2

i

)
− 2E (r̂iri |X) + E

(
r̂2

i

∣∣∣X
)

= 1 − 2Xi

(
XTX

)−1
XTE (rri) + Pii = 1 − 2Xi

(
XTX

)−1
XT1i + Pii

= 1 − 2Xi

(
XTX

)−1
XT

i + Pii = 1 − 2Pii + Pii = 1 − Pii.
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Proof of Proposition 8: The fitted value vector for observations belonging to cluster g after

running a regression of r on X is r̂g = Xg
(
XTX

)−1 XTr, where Xg correspond to the rows of the

observations belonging to cluster g. Then,

E
(

r̂gr̂T
g

∣∣∣X
)
= Xg

(
XTX

)−1
XTE

(
rrT
)

X
(

XTX
)−1

XT
g = Xg

(
XTX

)−1
XT

g = Pgg.

Let Og be a row selection matrix of dimensions ng × n that when multiplied to a matrix it

selects the rows corresponding to the observations of cluster g. Then,

E
((

rg − r̂g
) (

rg − r̂g
)T
∣∣∣X
)
= E

(
rgrT

g

)
− E

(
rgr̂T

g

∣∣∣X
)
− E

(
r̂grT

g

∣∣∣X
)
+ E

(
r̂gr̂T

g

∣∣∣X
)

= Ing − E
(

rgrT
)

X
(

XTX
)−1

XT
g − Xg

(
XTX

)−1
XTE

(
rrT

g

)
+ Pgg

= Ing − OgX
(

XTX
)−1

XT
g − Xg

(
XTX

)−1
XTOT

g + Pgg

= Ing − Xg

(
XTX

)−1
XT

g − Xg

(
XTX

)−1
XT

g + Pgg

= Ing − 2Xg

(
XTX

)−1
XT

g + Pgg = Ing − Pgg = Mgg.

Let us introduce an auxiliary Lemma that will prove helpful for proving Proposition 10.

Lemma 2. Let A be a positive definite matrix and matrix B be positive semi-definite. Then AB has only
non-negative eigenvalues. If B is positive definite, then AB has only positive eigenvalues.

Proof. Let v be an eigenvector of AB with associated eigenvalue λ, i.e. ABv = λv. As A is
positive definite we have that for all vectors Bv:

(Bv)T A (Bv) = λvTBTv ≥ 0.

The expression above can be equal to zero if λ = 0, which means Bv = 0 in that case. As B is
positive semi-definite then vTBTv ≥ 0, which means λ ≥ 0.

For the case where B is positive definite, we have that for any non-zero vector v, vTBTv > 0,
which means that Bv ̸= 0. Similarly as A is positive definite we have that:

(Bv)T A (Bv) = λvTBTv > 0, =⇒ λ > 0.

Lemma 3 (Eigenvalue properties of Pgg and Mgg). Define the following matrices:

Pgg =
(

P̂gg + M̂gg

)−1
P̂gg, and Mgg =

(
P̂gg + M̂gg

)−1
M̂gg.
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Assume M̂gg is non-singular. Then, the eigenvalues of Pgg lie within [0, 1) and the eigenvalues of Mgg
lie within (0, 1].

Proof. First, both P̂gg and M̂gg are positive semi-definite (PSD) as they are averages of matrices
formed by outer products of vectors. By assumption, M̂gg is non-singular. Together with PSD,
then M̂gg has strictly positive eigenvalues and is positive definite. Then, P̂gg + M̂gg is also
positive definite (PD), so its inverse exist and is also PD. Now, using Lemma 2 we can show
that Pgg has non-negative eigenvalues and Mgg has only positive eigenvalues. Let λ be an
eigenvalue of Pgg. Then, we have that as Mgg = Ing − Pgg, then 1 − λ is an eigenvalue of Mgg.
We can conclude then that all eigenvalues of Pgg are in [0, 1) and the eigenvalues of Mgg are in
(0, 1].

Proof of Proposition 10: First, we will show that PS
gg and MS

gg are similar matrices to Pgg and

Mgg, defined in Lemma 3. As M̂gg is non-singular then P̂gg + M̂gg is positive definite and there

exists a unique Cholesky decomposition where P̂gg + M̂gg = LggLT
gg and Lgg is non-singular.

Then, Pgg =
(

LggLT
gg

)−1
P̂ =

(
LT

gg

)−1
L−1

gg P̂. Pre-multiply Pgg by LT
gg and post-multiply it by(

LT
gg

)−1
and we get

LT
ggPgg

(
LT

gg

)−1
= LT

gg

(
LT

gg

)−1
L−1

gg P̂gg

(
LT

gg

)−1
= L−1

gg P̂gg

(
L−1

gg

)T
= PS

gg.

Then, Pgg and PS
gg are similar matrices, which means they have the same eigenvalues. By

Lemma 3 we have then that the eigenvalues of PS
gg lie within [0, 1). Similar argument to show

that the eigenvalues of MS
gg lie within (0, 1].

Proof of Proposition 9: Let m̂gg(j) ≡
(
rg(j)− r̂g(j)

) (
rg(j)− r̂g(j)

)T. Then, denote M̂gg(J) as

the average over J realizations of m̂gg(j):

M̂gg(J) =
1
J

J

∑
j=1

m̂gg(j).

We have that M̂gg(J) a.s.−−→ Mgg. By the continuous mapping theorem we have that

det
(

M̂gg(J)
)

a.s.−−→ det
(
Mgg

)
,

where det
(
Mgg

)
= 0 by assumption that Mgg is singular.

As m̂gg(j) is an outer product it is positive semi-definite and singular. This means that
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det
(

M̂gg(1)
)
= 0. Also, the Minkowski determinant theorem (see Marcus and Gordon, 1971)

implies that the determinant of the sum of two positive semi-definite matrices is greater or

equal to the sum of the determinants of each matrix. All of this implies that det
(

M̂gg(J)
)
≥ 0.

We proceed by contradiction. Suppose there exists a J∗ > 1 such that with positive prob-

ability det
(

M̂gg(J∗)
)
> 0. Now fix J∗ and let J = KJ∗, K ∈ N. Then, we can rewrite M̂gg(J)

as:

M̂gg(J) =
1
J

K

∑
k=1

J∗ × M̂(k)
gg (J∗),

where M̂(k)
gg (J∗) denotes the kth realization of M̂gg(J∗). Then,

det
(

M̂gg(J)
)
= det

(
K

∑
k=1

J∗

J
× M̂(k)

gg (J∗)

)
≥

K

∑
k=1

J∗

J
× det

(
M̂(k)

gg (J∗)
)
=

1
K

K

∑
k=1

det
(

M̂(k)
gg (J∗)

)
.

Denote the last expression in the right as D(K). As K → ∞, then D(K) a.s.−−→ E
(

det
(

M̂gg(J∗)
))

.

As the determinant of M̂gg(J∗) is always non-negative, and with positive probability it can be

strictly positive, then E
(

det
(

M̂gg(J∗)
))

> 0. But as K → ∞, then J → ∞ which means that

det
(

M̂gg(J)
)

a.s.−−→ 0. This leads to a contradiction.
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ONLINE APPENDIX

No More Limited Mobility Bias: Exploring the
Heterogeneity of Labor Markets

Miren Azkarate-Askasua and Miguel Zerecero

A Sample selection for leave-cluster-out variance estimators

We explain how to apply standard graph theory tools to select the sample for leave-cluster-out

variance estimators when clusters are either firm- or worker-specific. This approach includes

both the leave-one-out and leave-match-out cases, corresponding to clusters at the observation

and match level. Using the leave-one-out variance estimator requires that Pii ̸= 1, or equiva-

lently Mii ̸= 0. For the leave-cluster-out variance estimator, Mgg must not be singular.

To clarify the following points, we first represent the worker-firm data as a bipartite graph

(Bonhomme 2020). Figure A1 shows an example with six workers and five firms. The vertices

on the left represent workers, and the vertices on the right represent firms. The edges between

these vertices represent worker-firm matches, and each edge can have a weight corresponding

to the number of observations for that match. For example, the edge between worker 3 and

firm 3 has a weight of 4, meaning we have 4 observations of worker 3 employed by firm 3.

Connected set. First, we restrict our analysis to a connected component of the sample. This

ensures that the rank condition is satisfied and that all fixed effects can be compared (Abowd,

Creecy, and Kramarz 2002; Card, Heining, and Kline 2013; Jochmans and Weidner 2019). In

practice, we keep the largest connected set. The graph in Figure A1 is already connected.

Leave-one-out sample. The leave-one-out requirement is stronger. It requires that all param-

eters can still be identified after removing any single observation. If an observation has a lever-

age of 1, then identifying a parameter depends entirely on that observation. In terms of the

worker-firm network, this means that removing the edge corresponding to that observation

would disconnect the network, and the edge’s weight is 1.
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Figure A1: Bipartite graphs of workers and firms
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Notes: Workers are represented by square vertices to the left of each graph and firms are represented by circle
vertices in the right of each graph. If appropriate, weights are represented by numbers above edges.

An edge that disconnects the network when removed is known as a bridge or a cut-edge. In

Figure A1a, the dashed lines representing the edges connecting worker 3 with firms 2 and 3 are

bridges: removing one of them would disconnect the network. However, only the observation

corresponding to the edge connecting worker 3 and firm 2 would have a leverage of 1. If we

were to remove one observation corresponding to the match between worker 3 and firm 3, we

would still be able to identify the parameters.

Removing the bridge with weight of 1 connecting worker 3 with firm 2 would disconnect

the graph. We could then work with the largest connected subgraph, in this case the graph

formed by workers 3 to 6 and firms 3 to 5. We can then check check if the remaining network

has no bridges with unit weights. In this case, it does not, so this subsample would be suitable

for the leave-one-out variance estimator.

We have developed an algorithm that leverages this idea to efficiently select the sample to

use the leave-one-out variance estimator.
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Leave-match-out. Similarly, to use the leave-cluster-out variance estimator we need to restrict

the sample such that the deletion of all observations corresponding to the cluster, or in this

case, the match, would still allow us to identify all the parameters in the model. Naturally,

all workers that were only employed by one firm are not leave-match-out estimable: all the

information for the worker fixed effect is contained in the observations corresponding to that

worker’s unique match.

To ensure the sample allows to use the leave-match-out estimator we should restrict the

sample such that the bipartite graph has no bridges. As each edge of the graph corresponds

to a realized match, removing one edge corresponds to removing one match. Thus, we should

remove the matches that correspond to edges that are bridges. The weight of the edge does

not matter in this case as it only represents the number of observations of a given match. In

the example of Figure A1a, we would remove the observations corresponding to both bridges

connecting worker 3 with firms 2 and 3. The resulting sample would have data on workers 4

to 6 and firms 3 to 5. This sample is more restricted than the leave-one-out sample, which is an

expected result as the leave-match-out sample restriction is stronger.

Just like the leave-one-out case, we also have a highly efficient algorithm specifically for the

leave-match-out case.

Leave-worker-out. KSS propose an algorithm that makes the sample suitable to use the leave-

match-out estimator, and therefore also suitable for the leave-one-out estimator. KSS remove

from the sample all those workers that are cut vertices or articulation points. This means workers

whose deletion would disconnect the graph. We name this procedure as leave-worker-out. As

we explain below, the leave-worker-out approach is more restrictive than the leave-match-out

and leave-one-out approaches explained before.

Worker 3 in Figure A1a constitutes an articulation point. Their removal would disconnect

the graph and lead to the same leave-match-out subsample that we would obtain with the

bridge deleting procedure explained above. In this example, leave-worker-out leads to the

same sample selection as leave-match-out. However, this is not always the case, and in general,

using leave-worker-out is a stronger requirement than the leave-match-out approach. Consider

Figure A1b. The graph has no bridges, therefore it is leave-match-out estimable. However,

worker 2 is an articulation point. If we were to follow KSS’s leave-worker-out procedure we

3



would remove all observations corresponding to worker 2. We would then work with the data

corresponding to workers 3 and 4, and firms 3 and 4 as well. This is a much smaller subsample

compared to the original sample which was already leave-match-out estimable.

When we compare the performance of our method with respect to KSS we use the leave-

worker-out procedure to use the same samples and to make the methods as comparable as pos-

sible. However, in our applications we use the leave-one-out or leave-match-out procedures.

Leave-cluster-out: worker-specific or firm-specific cluster. Whenever the clusters are firm-

specific or worker-specific we can also use graph theory tools to device an algorithm that se-

lects a leave-cluster-out estimable sample. Of course, we cannot have clusters that contain an

entire firm or an entire worker’s spell: this clusters contain all the information to identify a firm

or worker fixed effect. But we could have, for example, clustering at the firm-occupation or

worker-occupation level.

Clusters contain collections of observations, which may include parts of or entire firm-

worker matches. As a result, the bipartite network representation of the data is not that useful.

However, we can envision the labor market as a tripartite graph. This graph would contain

three sets of vertices: workers, firms, and clusters. The clusters vertices work as intermediaries

between the firms and the workers.

To see how the tripartite graph representation of the data is helpful consider Figure A2a.

Here, the vertices to the left represent workers, vertices in the middle are clusters, and vertices

to the right, firms. This would be an example where the clusters are firm specific: each cluster

belongs to only one firm. The advantage of representing the data like this is that the cluster

vertices group all the edges connecting workers and firms. We can then find the clusters that

are articulation points. This means, clusters that upon their removal will leave the graph dis-

connected. In the example on Figure A2a, cluster 3 is an articulation point. If we would remove

it we would have two disconnected subgraphs as shown in Figure A2b. The algorithm would

detect cluster 3 quickly and remove it. Then it would pick the largest connected set. In this case

the set formed by workers 2, 3, and 4, firms 2 and 3, and clusters 4 to 7.

Leave-cluster-out: clusters with multiple workers and firms. When clusters contain multi-

ple firms and workers, the idea of the tripartite graph becomes impractical. It’s possible to
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Figure A2: Tripartite graphs of workers, clusters, and firms
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Notes: Workers are represented by square vertices to the left of each graph, clusters by diamond vertices at the
middle, and firms are represented by circle vertices in the right of each graph.

find networks where workers and firms seem connected only through shared clusters, even if

they’re actually disconnected. In these situations, we can use a “brute force” approach. First,

compute the largest connected set of workers and firms. Second, remove all workers and firms

belonging to a single cluster. Then, remove each cluster at a time and check if the resulting

graph has the same number of vertices (workers and firms) and is still connected. If the graph

becomes disconnected or has fewer vertices, discard that cluster. Repeat this process until no

more problematic clusters remain.

The brute force method is much slower than graph theory-based algorithms and can be

memory-intensive, especially for clusters with many observations.

The cluster algorithms align with the specialized algorithms for leave-one-out and leave-

match-out cases. If we define the cluster at the observation or match level, the leave-cluster-
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out algorithm will select the same sample as the leave-one-out or leave-match-out algorithms,

though it may run slightly slower. The brute force algorithm, however, is much slower.

B Additional details on leverage estimation

The estimators P̂ii and M̂ii are:

P̂ii =
1

JM

JM

∑
j=1

(r̂i(j))2 and M̂ii =
1

JM

JM

∑
j=1

(ri(j)− r̂i(j))2 ,

where ri(j) is the jth realization of the ith entry of Rademacher random vector; r̂i(j) is the ith

fitted value of running the regression of the jth realization of the random vector on X.

As covered in Case 2 of Section 3, the leave-one-out residual for observation i is equal to

ε̂i/Mii. As we use the estimator Mii rather than the true value Mii, we introduce some non-

linearity bias. We correct it up to a second order.

Let 1/Mii ≡ f
(

P̂ii, M̂ii

)
, which shows it is a function of both P̂ii and M̂ii. The expected

value of the second-order approximation of f
(

P̂ii, M̂ii

)
around Pii and Mii is:

E
(

f
(

P̂ii, M̂ii

))
≈ 1

Mii
+

Pii

M3
ii

E
(

M̂ii − Mii

)2
− 1

M2
ii

(
E
(
(P̂ii − Pii)(M̂ii − Mii)

))
.

The feasible bias corrected estimator of 1/Mii would be:

1
Mii

(
1 − Pii

M2
ii

v̂ar(M̂ii) +
1

Mii
ĉov

(
P̂ii, M̂ii

))
,

where v̂ar and ĉov are sample variance and covariance estimators.31

Direct computation. Alternatively, an exact computation of the leverage is possible by using

the definition of fitted values ŷ = Py and a regression-intensive procedure. We have that the

leverage of observation i is equal to

Pii =
∂ŷi

∂yi
,

31The sample variance of M̂ii is 1
JM

([
1

JM−1 ∑JM
j=1 (ri(j)− r̂i(j))4

]
− JM

JM−1 M̂2
ii

)
. The sample covariance is

1
JM

([
1

JM−1 ∑JM
j=1 (ri(j)− r̂i(j))2 r̂i(j)2

]
− M̂ii P̂ii

)
.
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where yi and ŷi are the ith elements of ŷ and y.

The following remark shows how to compute these leverages without computing the pro-

jection matrix P using only linear regressions.

Proposition 11. Let ỹ(i) be a vector of length n where every entry is equal to zero, except the ith entry
that is equal to one. The leverage of observation i is equal to the fitted value ŷi of a linear regression of
ỹ(i) on X.

Proof. Let Pi be the ith row of the projection matrix P. Then, for any vector y we have that the
ith fitted value ŷi is equal to ŷi = Piy = ∑j Pijyj. Let y = ỹ(i). Then ŷi = Pii.

When the data set is large, the direct computation of the leverages is not feasible. We leave

the exact computation for the problematic cases identified by the following diagnostic.

Diagnostic and adjustment. Although using Mii as the estimator of Mii rules out nonsensical

estimates outside the [0, 1] interval, the estimates for 1/Mii, could still violate some theoretical

bounds. We detect problematic estimations of 1/Mii by checking that they are consistent with

the theoretical bounds for the leverages Pii ∈ [1/n, 1]. These bounds are derived from the

following proposition, which might be well known for some readers.

Proposition 12. Let X be a full rank matrix of dimensions n × k, where a vector of ones can be obtained
through column operations. Let P = X

(
XTX

)−1 XT, with ith diagonal element Pii. Then 1/n ≤ hii ≤ 1
for all i.

Proof. As P is idempotent then Pii = P2
ii + ∑j ̸=i P2

ij. Then Pii ≤ P2
ii =⇒ Pii ≤ 1. Now, let X̃

be the full rank matrix of dimensions n × k that contains a vector of ones after doing column
operations on X. Then define P̃ = X̃

(
X̃TX̃

)−1 X̃′ with diagonal elements P̃ii. It is well known
that 1/n ≤ P̃ii (see for example Lemma 2.2 in Mohammadi (2016)). As X and X̃ have the same
column space, then P = P̃. Thus, 1/n ≤ Pii.

The corollary of the proposition above is that 1/Mii ≥ n/(n − 1). Thus, we check if our

estimates of 1/Mii satisfy this bound. We directly compute leverages corresponding to the

estimates of 1/Mii that fall outside those bounds by using the result of Proposition 11.

The following algorithm takes as inputs the covariates X and gives output a combination

of actual and estimates for 1/Mii that will be used for the computation of the leave-one-out

residuals.

Steps 1 to 8 of the algorithm estimate P̂ii and M̂ii. Steps 9 and 10 compute the necessary

objects to compute the bias correction coming from the non-linearity of 1/Mii. Steps 12 to 19

do the diagnostic and, if necessary, the computation of the actual leverage Pii.
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Algorithm 2 Estimate leverages, diagnosis and compute those out of bounds

1: z(0)P = 0, z(0)M = 0, z(0)2 = 0, and z(0)PM = 0 are vectors of length n.
2: for j = 1, . . . , JM do
3: Simulate a vector r of length n of mutually independent Rademacher entries.
4: Compute fitted values r̂ from a regression of r on X.
5: Compute z(j)

P = z(j−1)
P + (r̂)2 and z(j)

M = z(j−1)
M + (r − r̂)2.

6: Compute z(j)
2 = z(j−1)

2 + (r − r̂)4 and z(j)
PM = z(j−1)

PM + (r − r̂)2 (r̂)2

7: end for
8: Compute P̂ii = z(JM)

P,i /JM and M̂ii = z(JM)
M,i /JM for all i ∈ {1, . . . , n}.

9: Compute v̂ar(M̂ii) =
1

JM

(
z
(JM)
2,i

JM−1 −
JM

JM−1 M̂2
ii

)
for all i ∈ {1, . . . , n}.

10: Compute ĉov(P̂ii, M̂ii) =
1

JM

(
z
(JM)
PM,i

JM−1 −
JM

JM−1 P̂ii M̂ii

)
for all i ∈ {1, . . . , n}.

11: Compute Mii =
M̂ii

P̂ii+M̂ii
for all i ∈ {1, . . . , n}.

12: for i = 1, . . . , n do

13: if 1
Mii

(
1 − Pii

M2
ii

v̂ar(M̂ii) +
1

Mii
ĉov

(
P̂ii, M̂ii

))
≤ n

n−1 then

14: Generate ỹ(i) ∈ Rn, where ỹ(i)i′ ̸=i = 0, ỹ(i)i′=i = 1.
15: Compute the fitted values ̂̃y(i) of a regression of ỹ(i) on X.
16: Get leverage Pii = ̂̃y(i)i′=i.
17: Get 1/Mii = 1/(1 − Pii).
18: end if
19: end for
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C Additional details on computation of leave-cluster-out vari-
ance estimator

The goal after estimating MS
gg is to get the leave-cluster-out residuals. Here we show how to

avoid doing unnecessary matrix inversions after doing the Cholesky decomposition.

The leave-cluster-out residuals for cluster g are:

ε̂LC
g =

(
MS

gg

)−1
ε̂g = LT

gg

(
M̂gg

)−1
Lggε̂g ⇐⇒ M̂gg

(
LT

gg

)−1
ε̂LC

g = Lggε̂g.

We can then find z ≡
(

LT
gg

)−1
ε̂LC

g that solves M̂ggz = Lggε̂g. This is much more efficient than

inverting M̂gg directly. Finally, we get ε̂LC
g = LT

ggz.

Algorithm 3 presents the steps to estimate the different diagonal blocks V̂gg as well as the

matrices to compute the bootstrap residuals for each cluster, which we denote Bgg+ and Bgg− .

Algorithm 3 Estimate M̂S
gg. Compute V̂gg, Bgg+, and Bgg−

1: For all g = 1 . . . G, ε̂g and yg are the observations of ε̂ and y corresponding to cluster g.

2: For all g = 1 . . . G, z(0)P,g = 0, z(0)M,g = 0 are matrices of dimensions ng × ng.
3: for j = 1, . . . , JM do
4: Simulate a vector r of length n of mutually independent Rademacher entries.
5: Compute fitted values r̂ from a regression of r on X.
6: For all g = 1 . . . G, compute z(j)

P,g = z(j−1)
P,g + r̂gr̂T

g .

7: For all g = 1 . . . G, compute z(j)
M,g = z(j−1)

M,g +
(
rg − r̂g

) (
rg − r̂g

)T.
8: end for
9: for g = 1, . . . , G do

10: Compute P̂gg = z(JM)
P,g /JM and M̂gg = z(JM)

M,g /JM.

11: Get Lgg via Cholesky decomposition such that LggLT
gg = P̂gg + M̂gg.

12: Get z such that M̂ggz = Lggε̂g.
13: ε̂LC

g = LT
ggz.

14: Compute V̂gg = 1
2

(
yg

(
ε̂LC

g

)T
+ ε̂LC

g yT
g

)
.

15: Get Bgg+, and Bgg− using Steps 2 to 4 of Algorithm 1.
16: end for
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C.1 Simulation of bootstrap errors with leave-cluster-out variance estimate

Here we show how to simulate Bgg+r and Bgg−r using only two vectors instead of two matrices,

which improves memory efficiency.

Focusing on Bgg+ (the same applies for Bgg−), Proposition 6 shows that Bgg+ is a matrix

where only the first column contains non-zero values, i.e., Bgg+ =
[
bgg+, 0, . . . , 0

]
. Let r =[

r1, . . . , rng

]′
be a vector of independent Rademacher entries. Then, Bgg+r = r1bgg+, where r1

is a random scalar. This means we only need to simulate one Rademacher random variable per

cluster, r1, and work with the vector bgg+.

When simulating for all the clusters, we can stack all the vectors {bgg+} and multiply each

one by its corresponding simulated Rademacher value. This approach resembles the Wild Block

bootstrap.

D Sample construction

The data source BTS is a repeated cross section with the universe of jobs per year. Worker

identifiers change yearly but the data records all the jobs of a worker in a given year and in the

previous one. That is, we do not have a panel of workers by matching identifiers, as the worker

identifiers change every year, but one can construct the panel by matching other observable

characteristics. The data has information on age, a firm and establishment identifiers, main

job, occupation, gender and the municipality of the establishment. Babet et al. (2022) provide a

code to match workers across datasets using this information. The code generates an individual

identifier that tracks workers across years, which we use to generate the panel.

After creating the panel, we make additional sample restrictions. We focus on main jobs of

workers at the private sector working in metropolitan France with positive hourly wages, with

occupation, location, age and gender information. We focus on prime aged workers who are

between 20 and 60 years old. To avoid noisy hourly wages, we only keep observations with

at least 90 days and 100 hours worked. We also exclude spells that have unfeasible number of

hours beyond 24 hours per day worked. We exclude occupations that are related to farming or

public employment.32 Finally, we eliminate spells that have hourly wages below 80% or above

32In particular, after using a data provided filter for public workers, we also exclude the following 4-digit
occupations according to their PCS-ESE classification: 331A, 333A, 333B, 333C, 333D, 334A, 335A, 451A, 451B,
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1,000 times the hourly minimum wage per year and worker identifiers that do not have single

yearly observations at some point of our samples 2009-2014 or 2015-2019. After the minimum

wage filters, we transform nominal hourly wages to real ones by using the CPI.

The source variables we use are:

• AGE: age of the worker in a given year. As Babet et al. (2022) note in their Appendix C.1,

there are age discrepancies across years. To overcome that, we impute the worker age

such that it is consistent with the age at first appearance on the sample. We restrict to

prime age workers aged between 20 and 60.

• COMT: is the municipality identifier. We match the municipality codes to the commuting

zone classification in 2020 ZEMP2020.

• DOMEMP: is a variable that can be used to restrict to workers whose workplace is the

private sector. Private workers are those with DOMEMP equal to 6, 7, 8 and 9.

• DOMEMP_EMPL: is a variable that can be used to restrict to workers whose employer is

a private firm. Private workers are those with DOMEMP_EMPL equal to 6, 7, 8 and 9.

• IR_NBHEUR: we drop observations with imputed hours by keeping only IR_NBHEUR

equal to D.

• NBHEUR: total yearly hours in the job. Hourly wages in the job are defined as

S_BRUT/NBHEUR. We keep observations with positive hourly wages.

• NIC: the concatenation of SIREN and NIC gives the establishment identifier. Our defini-

tion of establishment is the aggregation of all the establishments of a firm within commut-

ing zone (ZEMP2020).

• PCS: is a 4-digit occupation classification that is well maintained starting in 2009. In par-

ticular we use the Nomenclatures des professions et catégories socioprofessionnelles des emplois

salariés des employeurs privés et publics (PCS-ESE). We use 2-digit occupations by taking the

first 2 digits of PCS. We remove workers with farming occupations (2-digit occupation

451C, 452A, 452B, 521A, 521B, 522A, 523A, 523B, 523C, 523D, 524A, 524B, 524C, 524D, 525C, 531A, 531B, 531C,
532A, 532B, 532C, 533A.
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equal to 10), public occupations and unassigned codes (missing information or 2 digits

equal to 99).

• PPS: indicator of main job or poste principal. We keep observations with PPS equal to 1.

• REGT: denotes the region of the establishment. We restrict to metropolitan France by

keeping observations with REGT higher than 6 and dropping unclassified regions (REGT

equal to 99).

• S_BRUT: gross yearly earnings in the job. We keep observations with positive earning

information.

• SEXE: gender of the worker. Man if SEXE equal to 1 and woman if equal to 2.

• SIREN: is the firm identifier.

• TYP_EMPLOI: is a variable that can be used to restrict to workers with ordinary jobs by

keeping TYP_EMPLOI equal to "O".

E Efficient AKM regression

Here we describe an efficient method for estimating the basic two-way fixed effect model:

yit = θi + ψJ (i,t) + εit.

This approach improves the performance of bias correction by making each bootstrap regres-

sion more efficient. This method is applicable only when the model includes two sets of fixed

effects. Additional covariates should be residualized beforehand.

Assume all firms in our sample are connected through worker mobility. Within each firm,

there are two types of workers: stayers (those who remain in the same firm throughout the

sample) and movers (those who switch firms). The key idea is that the firm fixed effects esti-

mated using only movers are numerically identical to those estimated using the entire sample.

Therefore, we can run the regression with only movers, simplifying the process by reducing
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the number of covariates, as we exclude the fixed effects of the stayers. In our application with

French data, these fixed effects represent the largest share of covariates.

To clarify, consider the first order condition for the worker fixed effect θi for a worker i who

has worked for the same firm throughout the sample:

∑
t

(
yit − θ̂i − ψ̂J (i,t)

)
= 0. (E1)

The OLS estimator of θi is simply the average of yit over the entire sample, minus the firm fixed

effect estimator ψ̂J (i,t).

Now, consider the first order condition for the firm J = J (i, t) where the stayer worker i

was employed:

∑
j∈J

∑
t

(
yjt − θ̂j − ψ̂J

)
= 0.

This sum can be split into two parts: one for movers and one for stayers:

∑
j∈{J ∩Movers}

∑
t

(
yjt − θ̂j − ψ̂J

)
+ ∑

j∈{J ∩ Stayers}
∑

t

(
yjt − θ̂j − ψ̂J

)
= 0.

The second term, which groups the stayers, equals zero because for all stayers ∑t

(
yjt − θ̂j − ψ̂J

)
=

0, as shown by the stayer’s first order condition (E1) above. This means that stayers do not pro-

vide additional information for identifying the firm fixed effects, allowing us to exclude them

from the regression without changing the result.

After running the regression with only movers, we can estimate the stayers’ fixed effects

using:

θ̂i =
1
Ti

∑
t

(
yit − ψ̂J (i,t)

)
, (E2)

where Ti is just the length of the time interval of worker i in the sample.

This sequential estimation method avoids combining all observations and covariates, reduc-

ing the size of the system of normal equations to be solved. It is memory efficient because the

matrices needed for the normal equations with only movers are much smaller. This is important

in applications like ours, with limited memory space and millions of fixed effects.
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Advantages for leverage estimation. We can use the same logic to simplify the estimation of

the leverages for each observation. As we explained in the main text, we estimate leverages by

running regressions of Rademacher random variables on X and using either the fitted values or

the residuals. The fitted value in the simple two-way fixed effect regression is

ŷit = θ̂i + ψ̂J (i,t).

Again, as stayers have no impact on the estimators of the firm fixed effects, we can then run the

regressions to estimate the leverages using only the observations for the movers.

For the stayers, is even more simple. As explained in Online Appendix B, the leverage of

observation i is just ∂ŷit
∂yit

. From equation (E2) above we have that, for stayers, their leverages are:

∂ŷit

∂yit
=

∂θ̂it

∂yit
+

∂ψ̂J (i,t)

∂yit
=

∂θ̂it

∂yit
+ 0 =

1
Ti

,

where we use
∂ψ̂J (i,t)

∂yit
= 0 as, again, stayers do not affect the firm fixed effect estimator.

When workers within the same firm belong to multiple clusters, they are still estimable

using the leave-cluster-out method. The projection matrix element for the row corresponding

to observation it and the column corresponding to observation i′t′ can be computed as ∂ŷi′t′
∂yit

. In

fact, the leverage is just a special case where it = i′t′. By a similar argument than before, we

have ∂ŷi′t′
∂yit

= 1/Ti if i = i′, and ∂ŷi′t′
∂yit

= 0 if i ̸= i′.

This implies that within a cluster, the projection matrix P and the residual matrix M are

block diagonal. One block contains all the movers within the cluster, while the other diagonal

blocks correspond to stayers. Consequently, we can treat these stayers as if they belong to a

different cluster, separating them from the original cluster for analysis.

One simulation per stayer. To do the bootstrap we could simulate, for each observation, v∗
it.

As explained above, we just run the regressions using only the movers to identify the firm fixed

effects. A quick inspection of equation (E2), tell us that we do not need to simulate the entire

vector for each observation of each stayer, but rather it suffices to simulate the average. In other

words, if a stayer is Ti periods in the sample, there is no need to simulate Ti times a random

variable v∗
it for each period. Instead we can simulate 1

Ti
∑t v∗

it. The only requirement is to make

sure that the variance of the average is consistent with the variances of the individual v∗
it’s.

14



This means we only need to do a simulation per stayer. This increases the computation

speed by reducing the number of simulations to do for each bootstrap. Also, it is much more

memory efficient as it reduces the size of vectors of outcome variables to simulate during the

bootstrap. The gains can be significant in typical applications where the majority of workers in

the sample are stayers.

Solving the normal equations. The normal equations of the two-way fixed effect model sup-

port a Laplacian representation. Let D be the matrix of worker dummies and F the matrix of

firm dummies,with one firm’s fixed effect removed for normalization. Define the matrix of

covariates as X = [D, −F]. By changing the sign of the matrix F, XTX becomes a Laplacian

matrix. This is very helpful as systems of equations involving Laplacian matrices can be solved

in a very efficient way. We solve for the normal equations in Matlab using the preconditioned

conjugate gradient method, with the preconditioner from Koutis, Miller, and Tolliver (2011),

optimized for this type of Laplacian systems.

F Sorting with alternative labor market definitions

In this section, we present additional tables and figures that complement the analysis in the

main text. First, we show that the results concerning sorting and labor market size remain

robust when using an alternative and more granular definition of labor markets; here, they are

defined as the combination of commuting zones and 4-digit occupations, rather than 2-digit

occupations. Second, we do the same exercise but defining labor markets as commuting zones

like Dauth et al. (2022), Leknes et al. (2022), and Pérez et al. (2023).

F.1 Labor markets: commuting zones × 4-digit occupations

Here we present the same figures as in the main text using the 2015-2019 sample but with

the alternative definition of labor markets as the combination of commuting zones and 4-digit

occupations. We first show the relationship between sorting direction and labor market size,

followed by the relationship between sorting direction and labor market size.

Figure F1 and Table F1 show that when defining a labor market using 4-digit occupations,

the slope is also greater after correcting for bias. Moreover, when measuring labor market size
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Figure F1: Sorting direction and labor market size: CZ × 4-digit occupations
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Notes: Binned scatter plots between sorting direction—the correlation between worker (θ) and firm (ψ) fixed ef-
fects—and labor market (combination of commuting zone and 4-digit occupations) size. x-axis: two different
measures of size by the logarithm of the (i) number of workers for the top figures, and (ii) number of firms for the
bottom figures. y-axis: on the left, plug-in estimates, on the right, bias-corrected estimates.

by the number of firms, the slope changes sign, becoming positive only with the bias-corrected

estimates.

Regarding the relationship of sorting intensity and labor market size, Figure F2 and Table F1

show that the result in the main text is robust to this alternative definition of the labor market:

when using the corrected estimates, the relationship changes sign and turns negative.
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Table F1: Gradient of sorting on labor market size: CZ × 4-digit occupations

Sorting Direction Sorting Intensity

Plug-in Bootstrap Plug-in Bootstrap

log No. Workers 0.0208 0.0595 0.0003 -0.0175
(0.0010) (0.0017) (0.0008) (0.0017)

log No. Firms 0.0013 0.0359 0.0163 -0.0007
(0.0010) (0.0018) (0.0008) (0.0017)

Number of Markets 39,776 39,520

Notes: Slope coefficients of an OLS regression of sorting direction—worker-firm correlation—, and sorting
intensity—worker-coworker correlation—with different measures of labor market (combination of commuting
zone and 4-digit occupations) size. Standard errors in parenthesis. Plug-in: slope estimate using plug-in esti-
mates. Bootstrap: slope estimate using bootstrap-corrected estimates with the leave-match out covariance matrix
estimator.

Figure F2: Sorting intensity and labor market size: CZ × 4-digit occupations
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Notes: Binned scatter plots between sorting intensity—the correlation between worker fixed effects (θ) and the
average of coworkers (θ̄)—and labor market (combination of commuting zone and 4-digit occupations) size. x-
axis: two different measures of size by the logarithm of the (i) number of workers for the top figures, and (ii)
number of firms for the bottom figures. y-axis: on the left, plug-in estimates, on the right, bias-corrected estimates.
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F.2 Labor markets: commuting zones

We repeat the exercises from the previous section using the 2015-2019 sample, but now define

labor markets based only on commuting zones, rather than using combinations of commuting

zones and occupational codes.

When defining labor markets as combinations of commuting zones and occupations—whether

at the 2-digit or 4-digit level—we found that corrected estimates strengthen the relationship be-

tween sorting direction and market size, while weakening the relationship between sorting in-

tensity and market size. However, when defining labor markets using only commuting zones,

these patterns are reversed. As shown in Figures F3 and F4, and Table F2, the relationship

between market size and sorting direction weakens after correcting for limited mobility bias,

while the relationship between sorting intensity and market size becomes stronger with the

corrected estimates.

Previous studies have used this same definition of labor markets, allowing us to compare

our results with theirs. For example, using data from Germany, Dauth et al. (2022) found a slope

coefficient of 0.06 between the uncorrected worker-firm correlation and the log of population

for the 2008-2014 period—slightly larger than our estimate of 0.05.33 They reported a similar

estimate after applying KSS corrections city-by-city. In contrast, we found a slope estimate of

0.023 after correcting for limited mobility bias, less than half the slope found with uncorrected

correlations.

Similarly, Pérez et al. (2023), using data from Mexico, found a slope estimate of 0.045 be-

tween the log of the commuting zone population and the uncorrected worker-firm correlation.

Like us, they observed a smaller slope coefficient (0.0244) after correcting for limited mobility

bias.

Using data from Norway, Leknes et al. (2022) reported a slope coefficient of 0.025 based on

uncorrected correlations. When using historical mining sites as instruments for current city

populations, they found a larger slope estimate of 0.039.

Lastly, Dauth et al. (2022) study the relationship between sorting intensity and labor market

size using uncorrected estimates (Table B.1 in their Online Appendix). They found a slope

estimate of 0.047, higher than both our uncorrected (0.02) and corrected (0.03) slope estimates.

33We obtained similar slope estimates using our 2009-2014 sample.
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Figure F3: Sorting direction and labor market size: CZ

0.0

0.2

0.4

8 10 12
log number of workers

co
rr

 (θ
, ψ

) P
lu

g−
in

0.0

0.2

0.4

8 10 12
log number of workers

co
rr

 (θ
, ψ

) B
oo

ts
tr

ap

−0.1

0.0

0.1

0.2

0.3

0.4

6 7 8 9 10
log number of firms

co
rr

 (θ
, ψ

) P
lu

g−
in

−0.1

0.0

0.1

0.2

0.3

0.4

6 7 8 9 10
log number of firms

co
rr

 (θ
, ψ

) B
oo

ts
tr

ap

Notes: Binned scatter plots between sorting direction—the correlation between worker (θ) and firm (ψ) fixed ef-
fects—and labor market (commuting zone) size. x-axis: two different measures of size by the logarithm of the (i)
number of workers for the top figures, and (ii) number of firms for the bottom figures. y-axis: on the left, plug-in
estimates, on the right, bias-corrected estimates.
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Table F2: Gradient of sorting on labor market size: CZ

Sorting Direction Sorting Intensity

Plug-in Bootstrap Plug-in Bootstrap

log No. Workers 0.0502 0.0232 0.0204 0.0300
(0.0048) (0.0068) (0.0026) (0.0030)

log No. Firms 0.0483 0.0235 0.0220 0.0313
(0.0054) (0.0073) (0.0028) (0.0032)

Number of Markets 287 287

Notes: Slope coefficients of an OLS regression of sorting direction—worker-firm correlation—, and sorting
intensity—worker-coworker correlation—with different measures of labor market (commuting zones) size. Stan-
dard errors in parenthesis. Plug-in: slope estimate using plug-in estimates. Bootstrap: slope estimate using
bootstrap-corrected estimates with the leave-match out covariance matrix estimator.

Figure F4: Sorting intensity and labor market size: CZ
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Notes: Binned scatter plots between sorting intensity—the correlation between worker fixed effects (θ) and the
average of coworkers (θ̄)—and labor market (commuting zones) size. x-axis: two different measures of size by the
logarithm of the (i) number of workers for the top figures, and (ii) number of firms for the bottom figures. y-axis:
on the left, plug-in estimates, on the right, bias-corrected estimates.
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