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Abstract

This paper revisits the BLP inversion and clarifies a common misconception: the fixed-point

iteration used to recover mean utilities is not a contraction mapping; Berry, Levinsohn, and

Pakes (1995) proved it only for a componentwise bounded (truncated) operator. Neverthe-

less, I show that iterating the unbounded operator converges to the unique fixed point. Thus,

practitioners can continue to use the standard unbounded iteration with formal convergence

guarantees. I also provide bounds linking the local convergence rate to the outside share,

explaining the empirical observation of faster convergence when the outside option is large.
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Keywords: Random coefficients logit demand, BLP, Contraction mapping, Convergence

In their seminal paper, Berry, Levinsohn, and Pakes (1995) (BLP henceforth) introduce the

random-coefficient logit model and an estimator for it. It has been the workhorse for discrete-

choice demand estimation for the past 30 years. A key step is an inversion that, for a given

distribution of random coefficients θ, solves for the mean utilities δ via the fixed-point iteration

δ← δ + log ŝ− logS(δ; θ), (1)

*Contact: mzerecer@uci.edu. I thank Jiawei Chen and Max Lesellier for their comments and suggestions. Any
remaining errors are my own.
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where log acts elementwise on the observed share vector ŝ, and S(δ; θ) is the model-implied

share vector. Let T(δ) denote the right-hand side of (1), and its Jacobian as∇T(δ) := ∂T(δ)/∂δ.

BLP state in their main text (p. 865) that T(δ), as defined in (1), is a contraction mapping.

This is incorrect. In fact, they prove a contraction mapping only for a bounded operator

T(δ) ≡ min{T(δ), δ}, (2)

where the minimum is taken componentwise and δ is an upper bound on δ. To the best of my

knowledge, the literature has not provided theoretical guarantees that the unbounded iteration

(1) converges to the fixed point, and has wrongly claim that BLP showed (1) is a contraction

mapping.1

In this note I prove that the unbounded iteration (1)—the procedure virtually all practition-

ers use—converges to the unique fixed point, even though T(δ) is not a contraction mapping.

Thus, the usual practice is theoretically justified.

The argument applies a result of Bifulco, Glück, Krebs, and Kukharskyy (2025) that up-

grades local attractiveness of a fixed point to global attractiveness for nonexpansive maps. Since

T(δ) is nonexpansive and its fixed point is locally attractive, convergence follows. Unlike BLP,

no truncation or boundedness is required.

In addition, I discuss the empirical observation that convergence is faster when the outside

good market share is larger. Dubé, Fox, and Su (2012, Table III) document that larger outside

shares are associated with smaller Lipschitz constants. However, the Lipschitz constant is a

global bound defined over the entire set RJ . If we follow BLP, using the sup-norm ∥ · ∥∞, we

have that ∥∇T(δ)∥∞ ≤ 1 everywhere, but one cannot obtain a global bound that is strictly less

than 1. This is precisely why BLP imposed boundedness: on a compact set, a maximizer of

∥∇T(δ)∥∞ exists and can be strictly smaller than 1. Thus, the Lipschitz constants reported in

Dubé et al. (2012) must have been computed for a restricted subset of RJ , most likely at or near

1Without claiming to be an exhaustive list, here are some prominent examples. First, in their review of best
practices for BLP estimation, Conlon and Gortmaker (2020, p. 1119) write that BLP showed (1) is a contraction
mapping. Second, Train (2009, pp. 322–323) states that BLP proved that iterating (1) converges to the fixed point.
Third, Nevo (2000, pp. 532–533) describes (1) as a “contraction mapping” and refers to BLP for a proof of con-
vergence. Fourth, Dubé, Fox, and Su (2012) refer to (1) as “BLP’s nested contraction-mapping algorithm,” and
similar. Finally, in deriving a “damped” operator for the nested logit version of BLP, the appendix of Grigolon and
Verboven (2014) discusses conditions for a contraction mapping à la BLP but omits the truncation that BLP use to
obtain a Lipschitz constant strictly less than one.
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the fixed point δ∗.

Nevertheless, the Jacobian evaluated at the fixed point ∇T(δ∗), remains informative about

convergence. The spectral radius of∇T(δ∗) governs the local convergence rate, and is bounded

above by ∥∇T(δ∗)∥∞. This allows us to relate convergence speed to the outside good market

share: larger outside shares imply smaller values of ∥∇T(δ∗)∥∞, and hence faster local conver-

gence. I show that without distributional assumptions on the random coefficients this bound

involves the outside share plus a covariance term. Under the common assumption of normally

distributed random coefficients, the bound simplifies and depends primarily on the observed

outside good share.

1 The random coefficient logit model

There are J + 1 products, including the outside option. Each consumer i derives utility from

product j given by

uij = δj + µij + εij,

where δj is the mean utility of product j, µij captures deviations due to heterogeneous tastes,

and εij is an i.i.d. Type I extreme value error. The outside option is normalized so that ui0 = εi0.

Consumers choose the product that yields the highest utility. Aggregating over the distri-

bution of heterogeneous tastes yields the market share function

Sj(δ; θ) =

� exp(δj + µij)

1 + ∑J
k=1 exp(δk + µik)

dF(µi; θ),

where F(µi; θ) denotes the distribution of consumer heterogeneity, parameterized by θ. In prac-

tice, this integral is evaluated by simulation.

The empirical problem is to recover the mean utilities δ that rationalize the observed market

shares ŝ. This inversion step is central to the BLP estimator, since δ can then be related linearly

to observed product characteristics, prices, and unobserved demand shocks.

What did BLP show? In their Appendix, BLP establish, first, that the bounded operator T(δ),

as defined by (2), is a contraction mapping. By Banach’s fixed point theorem, this implies (i)
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existence and uniqueness of the solution to the bounded system δ = T(δ), and (ii) that iterates

of T(δ) converge to the fixed point. BLP also show that the solution to the bounded system

cannot lie on the boundary.2 Thus, the solution to the bounded system is the same as the one

for the unbounded system δ = T(δ). This implies existence and uniqueness of the solution for

the unbounded system. But this does not imply that iterates over the unbounded operator T(δ)

converge to the fixed point. We need a different argument for that.3

2 Convergence properties of the unbounded operator

I present the main results here and explain briefly the proofs. I leave all the detailed proofs for

the Appendix.

Proposition 1. The map T(δ) in (1) is not a contraction mapping on RJ . Nevertheless, the iteration

δt+1 = T(δt) converges to the unique fixed point δ∗ from any starting value.

The proof for Proposition 1 is an application of a Theorem by Bifulco et al. (2025) that extends

the local attractiveness of the fixed point to be global for non-expansive Lipschitz mappings.

Thus, it suffices to prove that around the fixed point, T(δ) is locally attractive and Lipschitz

continuous with Lipschitz constant ≤ 1.

The asymptotic local (linear) rate of convergence is bounded above by the spectral radius

of the Jacobian at the fixed point, denoted ρ
(
∇T(δ∗)

)
, which is in turn bounded above by

∥∇T(δ∗)∥∞.4 The following propositions relate the local rate of convergence to the observed

outside market share.

Before presenting the following propositions, let me introduce some auxiliary notation. Let

πij :=
exp(δj + µij)

1 + ∑J
k=1 exp(δk + µik)

, and fij :=
πij

Sj(δ; θ)
.

2The proof in their published paper has a couple of typographic errors related to the definition of bounds.
These errors are not present in the slightly different NBER working paper proof.

3Let (X, d) be a metric space. Even if d(T(x), T(y)) < d(x, y) for all distinct x, y ∈ X, T is not a contraction
mapping because there need not exist a uniform c < 1 (the Lipschitz constant) with d(T(x), T(y)) ≤ c d(x, y) for all
x, y. Without such a uniform constant one can have factors ct ∈ (0, 1) with ct → 1 so that ∏t−1

k=0 ck stays bounded
away from zero and the distance does not vanish.

4See Ortega and Rheinboldt (1970, Ch. 10, Thm. 10.1.4).
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The following proposition bounds the spectral radius without distribution assumptions on

the distribution F.

Proposition 2. ρ(∇T(δ∗)) ≤ (1− ŝ0)−min
j
{Cov( fij, πi0)}.

The bound links the local (linear) convergence rate, governed by ρ(∇T(δ∗)), to the outside

share ŝ0. Larger ŝ0 tightens the bound. The covariance term captures how the product–j weights

fij comove with the outside choice probability πi0. Without additional restrictions on F, it is

hard to determine the sign of the covariance theoretically, so a sharper share-only bound is

generally unavailable.

We can get a more explicit bound using the following assumption:

Assumption 1. The random coefficient components µij are independent across goods, and each are

distributed normal with mean zero and variance σ2
j .

Proposition 3. Let σ2 = maxj σ2
j . If Assumption 1 holds, then

ρ(∇T(δ∗)) ≤ (1− ŝ0) +

√(
exp(σ2)− ŝ0

)
(1− ŝ0).

We can show that ρ(∇T(δ∗)) ≤ 1 regardless of the distributional assumptions. So the bound

above is only informative when ŝ0 > 1/2, as exp(σ2) ≥ 1.

Random coefficient nested logit. By the same reasoning, the unbounded iteration for the

nested-logit variant of BLP in Grigolon and Verboven (2014) is globally convergent.

3 Conclusion

This paper establishes global convergence of the unbounded BLP fixed-point iteration to the

unique fixed point, closing the gap between BLP’s bounded contraction argument and the al-

gorithm used in practice. The result, together with the spectral-radius bounds that highlight the

role of the outside share, provides the correct theoretical baseline for comparing this inversion

method with competing alternatives, like the one of Li (2018).
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APPENDIX

I begin with definitions and a few auxiliary lemmas (some standard; proofs included for

completeness). I then state a theorem of Bifulco et al. (2025) and reproduce its proof for con-

venience. Proposition 1 follows by verifying that the unbounded operator T(δ) satisfies the

theorem’s conditions. The remaining propositions reduce to characterizing ∥∇T(δ∗)∥∞.

Proof of Proposition 1

Definition 1 (Lipschitz and non-expansive mappings). Let (X, d) be a metric space. A mapping

F : X → X is Lipschitz continuous with Lipschitz constant L ≥ 0 if

d
(

F(x), F(y)
)
≤ L d(x, y) for all x, y ∈ X.

If L ≤ 1, we say F is non-expansive (with respect to d).

Definition 2 (Local asymptotic stability (Lyapunov)). Let (X, d) be a metric space and let x∗ ∈ X

be a fixed point of F : X → X. We say x∗ is locally asymptotically stable if there exists a neighborhood

U of x∗ such that for any x0 ∈ U , the iterates xt+1 = F(xt) satisfy xt → x∗ as t→ ∞.

Lemma 1 (Spectral radius condition for local stability). Let F : RJ → RJ be continuously differ-

entiable in a neighborhood of a fixed point x∗, and suppose the spectral radius satisfies ρ(∇F(x∗)) < 1.

Then x∗ is locally asymptotically stable for the iteration xt+1 = F(xt).

Proof. Fix ε > 0 so small that ρ(∇F(x∗)) + ε =: q < 1. By a standard result from matrix analysis

(see Lemma 5.6.10 of Horn and Johnson (2013)), there exists a vector norm ∥ · ∥∗ on RJ with

induced matrix norm ∥ · ∥∗ such that

∥∇F(x∗)∥∗ ≤ ρ(∇F(x∗)) + ε = q < 1.

By continuity of ∇F, there is r > 0 and q′ < 1 with

sup
z∈B∗(x∗,r)

∥∇F(z)∥∗ ≤ q′ < 1,
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where B∗(x∗, r) := {z : ∥z − x∗∥∗ ≤ r}. For any x, y ∈ B∗(x∗, r), the mean-value (integral)

formula gives

F(x)− F(y) =

� 1

0
∇F

(
y + t(x− y)

)
(x− y) dt,

whence

∥F(x)− F(y)∥∗ ≤
� 1

0
∥∇F(y + t(x− y))∥∗ dt ∥x− y∥∗ ≤ q′ ∥x− y∥∗.

Thus F is a contraction on B∗(x∗, r) (in the metric d∗(x, y) = ∥x − y∥∗). Since F(x∗) = x∗, for

any x ∈ B∗(x∗, r),

∥F(x)− x∗∥∗ ≤ q′∥x− x∗∥∗ ≤ q′r < r,

so F maps B∗(x∗, r) into itself. By Banach’s fixed-point theorem, the iterates xt+1 = F(xt)

converge to x∗ for every x0 ∈ B∗(x∗, r).

Remark 1 (Linearized stability). Lemma 1 is the discrete-time principle of linearized stability: if the

spectral radius of the Jacobian at a fixed point is < 1, then the fixed point is locally asymptotically stable.

See, e.g., Ortega and Rheinboldt (1970, Ch. 10).

Lemma 2 (Non-expansiveness of the unbounded operator). Let T(δ) = δ + log ŝ− logS(δ; θ)

and equip RJ with the metric d∞(x, y) = ∥x− y∥∞. Then T is globally non-expansive:

∥T(δ)− T(δ′)∥∞ ≤ ∥δ− δ′∥∞ for all δ, δ′.

Moreover, with ∇T(δ) := ∂T(δ)/∂δ, we have ∥∇T(δ)∥∞ ≤ 1 for all δ, and the bound is tight.

Proof. By the mean-value theorem it suffices to bound ∥∇T(δ)∥∞. Let πij(δ, µi) denote individ-

ual logit choice probabilities (conditional on µi). Then

Sj(δ; θ) =

�
πij(δ, µi) dF(µi; θ).

Differentiating under the integral gives

∂ logSj

∂δm
=

�
πij(1{j = m} − πim) dF(µi; θ)

�
πij dF(µi; θ)

.
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Hence

∇Tjm(δ) = δjm −
∂ logSj

∂δm
=

�
πij πim dF(µi; θ)
�

πij dF(µi; θ)
≥ 0.

For any fixed j,

J

∑
m=1
∇Tjm(δ) =

�
πij

( J

∑
m=1

πim

)
dF(µi; θ)

�
πij dF(µi; θ)

=

�
πij (1− πi0) dF(µi; θ)
�

πij dF(µi; θ)
≤ 1,

since 0 ≤ πi0 ≤ 1. Therefore ∥∇T(δ)∥∞ = maxj ∑m∇Tjm(δ) ≤ 1. Tightness follows along

sequences with πi0 → 0.

Remark 2. Because the global non-expansive bound in Lemma 2 is tight (i.e., it cannot be improved

to a uniform constant < 1 on RJ), Berry et al. (1995) truncate the map and work on a compact set

K = [δ, δ] ⊂ RJ . On K one has

sup
δ∈K
∥∇T(δ)∥∞ = c < 1,

so the truncated operator T : K → K is a contraction mapping and Banach’s theorem yields existence,

uniqueness, and convergence of the truncated iteration.

Lemma 3 (Spectral radius bounded by a matrix norm). Let ∥ · ∥ be any operator (induced) matrix

norm on RJ×J . For any matrix A ∈ RJ×J ,

ρ(A) ≤ ∥A∥.

Proof. Let λ be any eigenvalue of A with (nonzero) eigenvector v. By definition of the induced

norm,

∥A∥ = sup
x ̸=0

∥Ax∥
∥x∥ ≥

∥Av∥
∥v∥ =

∥λv∥
∥v∥ = |λ|.

Taking the supremum over all eigenvalues yields ρ(A) ≤ ∥A∥.

Lemma 4 (Local attractiveness at the fixed point). Let δ∗ satisfy S(δ∗; θ) = ŝ with ŝ0 ∈ (0, 1) and

ŝj > 0 for all j ≥ 1. Then ρ
(
∇T(δ∗)

)
< 1.
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Proof. By Lemma 2, for each j,

J

∑
m=1
∇Tjm(δ

∗) =

�
πij(1− πi0) dF(µi; θ)
�

πij dF(µi; θ)
= 1−

�
πij πi0 dF(µi; θ)

ŝj
< 1,

because πij > 0 and πi0 > 0 a.s. imply
�

πijπi0 dF > 0. Thus ∥∇T(δ∗)∥∞ = maxj ∑m∇Tjm(δ
∗) <

1 and hence, by Lemma 3, ρ
(
∇T(δ∗)

)
≤ ∥∇T(δ∗)∥∞ < 1.

Theorem 1 (Theorem C.1 from Bifulco et al. (2025)). Let (Z, d) be a metric space which is connected,

i.e., it cannot be written as the union of two non-empty open disjoint subsets. Let G : Z → Z be a

Lipschitz continuous function with Lipschitz constant 1, and let z∗ ∈ Z be a fixed point of G which is

locally asymptotically stable.

Then z∗ is globally attractive, i.e., for each z ∈ Z the sequence Gn(z) converges to z∗ as n → ∞. In

particular, z∗ is the only fixed point of G.

Proof. Let B denote the basin of attraction of the fixed point z∗, i.e., the set of all z ∈ Z for which

Gn(z)→ z∗ as n→ ∞. Note that B is non-empty since z∗ ∈ B.

Step 1: B is open. Since z∗ is locally asymptotically stable, there exists δ > 0 such that the

ball Bδ(z∗) ⊆ B. More generally, if z0 ∈ B, then Gn(z0) → z∗, so eventually Gn(z0) gets arbi-

trarily close to z∗. By local asymptotic stability around z∗, points near Gn(z0) also converge to

z∗. By continuity of G, points near z0 will have their iterates near Gn(z0), so they also converge.

Therefore B is open.

Step 2: B is closed. Let (zk)k∈N be a sequence in B that converges to some z ∈ Z. We need

to show z ∈ B, i.e., Gn(z)→ z∗ as n→ ∞.

Let ε > 0 be arbitrary. Since zk → z, choose k0 such that d(zk0 , z) < ε/2.

Since zk0 ∈ B, we have Gn(zk0) → z∗ as n → ∞. Therefore, there exists n0 such that for all

n ≥ n0:

d(Gn(zk0), z∗) < ε/2
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Now, using the Lipschitz continuity with constant 1, for n ≥ n0:

d(Gn(z), z∗) ≤ d(Gn(z), Gn(zk0)) + d(Gn(zk0), z∗)

≤ d(z, zk0) + ε/2

< ε/2 + ε/2 = ε

Since this holds for arbitrary ε > 0, we have Gn(z) → z∗ as n → ∞, so z ∈ B. Hence B is

closed.

Step 3: Connected space. Since Z is connected and B is both open and closed (and non-

empty), we must have B = Z. Therefore, z∗ is globally attractive.

Step 4: Uniqueness. If there were two fixed points z∗1 and z∗2 , then since B = Z, we would

have Gn(z∗1) → z∗2 . But Gn(z∗1) = z∗1 for all n, giving z∗1 = z∗2 . Therefore the fixed point is

unique.

Proof of Proposition 1. By the argument given on the main text, BLP showed that there exists a

unique fixed point δ∗. By Lemma 2, T is non-expansive on (RJ , d∞), and as explained in Remark

2, T(δ) is not a contraction mapping on RJ . By Lemma 4 and Lemma 1, the unique fixed point

δ∗ is locally asymptotically stable. Theorem 1 then gives global convergence of δt+1 = T(δt) to

δ∗ from any starting value.

Proofs of Propositions 2 and 3

Lemma 5 (Variance of fij). Let fij := πij/Sj(δ; θ). Then,

(i) Var( fij) is nonincreasing in δj.

(ii) Under Assumption 1, for all δj (in particular at the fixed point δ∗),

Var( fij) ≤
eσ2

j

s0
− 1.

Proof. Let Sj := Sj(δ; θ) = E[πij] and recall fij = πij/Sj.
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(i) Var( fij) is nonincreasing in δj. Since E[ fij] = 1, we have

Var( fij) = E[ f 2
ij]− 1,

d
dδj

Var( fij) =
d

dδj
E[ f 2

ij] = 2 E

[
fij

∂ fij

∂δj

]
.

Using ∂πij/∂δj = πij(1− πij) and ∂Sj/∂δj = E[πij(1− πij)],

∂ fij

∂δj
=

Sj πij(1− πij)− πij E[πij(1− πij)]

S2
j

=
πij

S2
j

(
E[π2

ij]− Sj πij

)
.

Therefore

E

[
fij

∂ fij

∂δj

]
=

1
S3

j

(
E[π2

ij]
2 − Sj E[π3

ij]
)

.

Recall πij ∈ [0, 1]. Then, by Cauchy–Schwarz inequality,

E[π2
ij] = E

[
π3/2

ij π1/2
ij

]
≤

√
E[π3

ij]
√

E[πij] .

Then E[π2
ij]

2 ≤ E[π3
ij]E[πij], so

d
dδj

Var( fij) ≤ 0. Equality holds only if πij is constant, so the

inequality is strict in any nondegenerate case.

(ii) Bound under Assumption 1. Write the “leave-j-out” sum S−j,i := ∑m ̸=j eδm+µim and Bij :=
1

1+S−j,i
∈ (0, 1].

We have:

fij =

eδj eµij

1 + S−j,i + eδj+µij

E

[
eδj eµij

1 + S−j,i + eδj+µij

] =

eµij

1 + S−j,i + eδj+µij

E

[
eµij

1 + S−j,i + eδj+µij

] .

Then

lim
δj→−∞

fij =

eµij

1 + S−j,i

E

[
eµij

1 + S−j,i

] .
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Moreover, under Assumption 1 (independence across goods),

lim
δj→−∞

fij =
eµij

E[eµij ]︸ ︷︷ ︸
=:Xij

·
Bij

E[Bij]︸ ︷︷ ︸
=:Yij

, Xij ⊥ Yij.

Clearly E[Xij] = E[Yij] = 1. Under Assumption 1, Xij depends only on µij while Yij depends

only on {µim}m ̸=j, so Xij ⊥ Yij. Therefore

lim
δj→−∞

Var( fij) = Var(Xij) + Var(Yij) + Var(Xij) Var(Yij).

If µij ∼ N (0, σ2
j ), then

Var(Xij) =
E[e2µij ]

E[eµij ]2
− 1 =

e2σ2
j

eσ2
j
− 1 = eσ2

j − 1.

Since 0 ≤ Bij ≤ 1, Var(Bij) ≤ E[Bij]
(
1−E[Bij]

)
, hence Var(Yij) ≤ 1/E[Bij]− 1. Combining,

lim
δj→−∞

Var( fij) ≤
(

eσ2
j − 1

)
+

(
1

E[Bij]
− 1

)
+

(
eσ2

j − 1
)(

1
E[Bij]

− 1
)

=
eσ2

j

E[Bij]
− 1.

Finally, since pointwise Bij = πi0/(1− πij) ≥ πi0, taking expectations gives E[Bij] ≥ E[πi0] =

s0. Using part (i), for any δj (in particular at δ∗),

Var( fij) ≤ lim
δj→−∞

Var( fij) ≤
eσ2

j

E[Bij]
− 1 ≤ eσ2

j

s0
− 1.

Proof of Proposition 2. From Lemma 2, for each j,

J

∑
m=1
∇Tjm(δ

∗) =

�
πij(1− πi0) dF

ŝj
= 1−

�
πijπi0 dF

ŝj
.
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Note that �
πijπi0 dF

ŝj
= E

[
πij

ŝj
πi0

]
= ŝ0 + Cov( fij, πi0).

Thus for each j,

∑
m
∇Tjm(δ

∗) = (1− ŝ0)−Cov( fij, πi0).

Taking the maximum row sum,

∥∇T(δ∗)∥∞ = max
j

∑
m
∇Tjm(δ

∗) ≤ (1− ŝ0)−min
j

Cov( fij, πi0).

Finally, Lemma 3 gives

ρ
(
∇T(δ∗)

)
≤ ∥∇T(δ∗)∥∞ ≤ (1− ŝ0)−min

j
Cov( fij, πi0).

which is the desired bound.

Proof of Proposition 3. Starting from Proposition 2 we get

ρ
(
∇T(δ∗)

)
≤ (1− ŝ0) + max

j
|Cov( fij, πi0)| ≤ (1− ŝ0) + max

j

√
Var( fij) Var(πi0)

Since 0 ≤ πi0 ≤ 1 with mean ŝ0, its variance is bounded by

Var(πi0) ≤ ŝ0(1− ŝ0).

It remains to bound Var( fij). Using Lemma 5, Var( fij) is maximized when δj −→ −∞. Under

Assumption 1, µij ∼ N(0, σ2
j ) independently across j. Again, using Lemma 5 we get, on the

fixed point δ∗,

Var( fij) ≤
exp(σ2

j )− ŝ0

ŝ0
.

Therefore

ρ
(
∇T(δ∗)

)
≤ (1− ŝ0) + max

j

√
(exp(σ2

j )− ŝ0)(1− ŝ0).

Letting σ2 = maxj σ2
j gives the stated bound.
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