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Abstract

This paper revisits the BLP inversion and clarifies a common misconception: the fixed-point
iteration used to recover mean utilities is not a contraction mapping; Berry, Levinsohn, and
Pakes (1995) proved it only for a componentwise bounded (truncated) operator. Neverthe-
less, I show that iterating the unbounded operator converges to the unique fixed point. Thus,
practitioners can continue to use the standard unbounded iteration with formal convergence
guarantees. I also provide bounds linking the local convergence rate to the outside share,

explaining the empirical observation of faster convergence when the outside option is large.
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In their seminal paper, Berry, Levinsohn, and Pakes (1995) (BLP henceforth) introduce the
random-coefficient logit model and an estimator for it. It has been the workhorse for discrete-
choice demand estimation for the past 30 years. A key step is an inversion that, for a given

distribution of random coefficients 8, solves for the mean utilities J via the fixed-point iteration

d < 0 +1logs—1logS(4;0), (1)
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where log acts elementwise on the observed share vector §, and S(J;0) is the model-implied
share vector. Let T(J) denote the right-hand side of (1), and its Jacobian as VT (J) := 9T (J)/d4.
BLP state in their main text (p. 865) that T(J), as defined in (1), is a contraction mapping.

This is incorrect. In fact, they prove a contraction mapping only for a bounded operator
T(6) = min{T(J), 6}, (2)

where the minimum is taken componentwise and J is an upper bound on §. To the best of my
knowledge, the literature has not provided theoretical guarantees that the unbounded iteration
(1) converges to the fixed point, and has wrongly claim that BLP showed (1) is a contraction
mapping.!

In this note I prove that the unbounded iteration (1)—the procedure virtually all practition-
ers use—converges to the unique fixed point, even though T(J) is not a contraction mapping.
Thus, the usual practice is theoretically justified.

The argument applies a result of Bifulco, Gliick, Krebs, and Kukharskyy (2025) that up-
grades local attractiveness of a fixed point to global attractiveness for nonexpansive maps. Since
T(0) is nonexpansive and its fixed point is locally attractive, convergence follows. Unlike BLP,
no truncation or boundedness is required.

In addition, I discuss the empirical observation that convergence is faster when the outside
good market share is larger. Dubé, Fox, and Su (2012, Table III) document that larger outside
shares are associated with smaller Lipschitz constants. However, the Lipschitz constant is a
global bound defined over the entire set R/. If we follow BLP, using the sup-norm || - ||co, We
have that [|[VT(d)||« < 1 everywhere, but one cannot obtain a global bound that is strictly less
than 1. This is precisely why BLP imposed boundedness: on a compact set, a maximizer of
IVT(J)]|« exists and can be strictly smaller than 1. Thus, the Lipschitz constants reported in

Dubé et al. (2012) must have been computed for a restricted subset of R/, most likely at or near

'Without claiming to be an exhaustive list, here are some prominent examples. First, in their review of best
practices for BLP estimation, Conlon and Gortmaker (2020, p. 1119) write that BLP showed (1) is a contraction
mapping. Second, Train (2009, pp. 322-323) states that BLP proved that iterating (1) converges to the fixed point.
Third, Nevo (2000, pp. 532-533) describes (1) as a “contraction mapping” and refers to BLP for a proof of con-
vergence. Fourth, Dubé, Fox, and Su (2012) refer to (1) as “BLP’s nested contraction-mapping algorithm,” and
similar. Finally, in deriving a “damped” operator for the nested logit version of BLP, the appendix of Grigolon and
Verboven (2014) discusses conditions for a contraction mapping a la BLP but omits the truncation that BLP use to
obtain a Lipschitz constant strictly less than one.



the fixed point .

Nevertheless, the Jacobian evaluated at the fixed point VT(J*), remains informative about
convergence. The spectral radius of VT (J*) governs the local convergence rate, and is bounded
above by ||[VT(*)||«. This allows us to relate convergence speed to the outside good market
share: larger outside shares imply smaller values of ||V T(§*)||«, and hence faster local conver-
gence. I show that without distributional assumptions on the random coefficients this bound
involves the outside share plus a covariance term. Under the common assumption of normally
distributed random coefficients, the bound simplifies and depends primarily on the observed

outside good share.

1 The random coefficient logit model

There are | 4 1 products, including the outside option. Each consumer i derives utility from
product j given by
Uij = 0j + Hij + €ij,

where §; is the mean utility of product j, y;; captures deviations due to heterogeneous tastes,
and ¢;; is an i.i.d. Type I extreme value error. The outside option is normalized so that u;p = ¢jo.
Consumers choose the product that yields the highest utility. Aggregating over the distri-

bution of heterogeneous tastes yields the market share function

5,(5;6) = / PO g0
! 1+ Z;{Zl exp (O + Mik)

where F(p;; 0) denotes the distribution of consumer heterogeneity, parameterized by 6. In prac-
tice, this integral is evaluated by simulation.

The empirical problem is to recover the mean utilities § that rationalize the observed market
shares 8. This inversion step is central to the BLP estimator, since § can then be related linearly

to observed product characteristics, prices, and unobserved demand shocks.

What did BLP show? In their Appendix, BLP establish, first, that the bounded operator T(§),

as defined by (2), is a contraction mapping. By Banach’s fixed point theorem, this implies (i)



existence and uniqueness of the solution to the bounded system § = T(J), and (ii) that iterates
of T(§) converge to the fixed point. BLP also show that the solution to the bounded system
cannot lie on the boundary.> Thus, the solution to the bounded system is the same as the one
for the unbounded system § = T(J). This implies existence and uniqueness of the solution for
the unbounded system. But this does not imply that iterates over the unbounded operator T(J)

converge to the fixed point. We need a different argument for that.?

2 Convergence properties of the unbounded operator

I present the main results here and explain briefly the proofs. I leave all the detailed proofs for

the Appendix.

Proposition 1. The map T(8) in (1) is not a contraction mapping on R). Nevertheless, the iteration

51 = T(8") converges to the unique fixed point §* from any starting value.

The proof for Proposition 1 is an application of a Theorem by Bifulco et al. (2025) that extends
the local attractiveness of the fixed point to be global for non-expansive Lipschitz mappings.
Thus, it suffices to prove that around the fixed point, T(J) is locally attractive and Lipschitz
continuous with Lipschitz constant < 1.

The asymptotic local (linear) rate of convergence is bounded above by the spectral radius
of the Jacobian at the fixed point, denoted p(VT(6*)), which is in turn bounded above by
|[VT(6*)|le-* The following propositions relate the local rate of convergence to the observed
outside market share.

Before presenting the following propositions, let me introduce some auxiliary notation. Let

_ exp((Sj + yij)
1+ ), exp(Se + pi)

4 oo T
, an f1] = m

7'(1']' .

2The proof in their published paper has a couple of typographic errors related to the definition of bounds.
These errors are not present in the slightly different NBER working paper proof.

3Let (X, d) be a metric space. Even if d(T(x),T(y)) < d(x,y) for all distinct x,y € X, T is not a contraction
mapping because there need not exist a uniform ¢ < 1 (the Lipschitz constant) with d(T(x), T(y)) < cd(x,y) for all
x,y. Without such a uniform constant one can have factors ¢; € (0,1) with ¢; — 1 so that ]_[It(;%] ¢k stays bounded
away from zero and the distance does not vanish.

4Gee Ortega and Rheinboldt (1970, Ch. 10, Thm. 10.1.4).
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The following proposition bounds the spectral radius without distribution assumptions on
the distribution F.

Proposition 2. p(VT(6*)) < (1 —38g) — min{Cov(f;j, 7ti0) }-
]

The bound links the local (linear) convergence rate, governed by p(VT(d*)), to the outside
share §). Larger 3y tightens the bound. The covariance term captures how the product-j weights
fij comove with the outside choice probability 7tj9. Without additional restrictions on F, it is
hard to determine the sign of the covariance theoretically, so a sharper share-only bound is
generally unavailable.

We can get a more explicit bound using the following assumption:

Assumption 1. The random coefficient components p;; are independent across goods, and each are

distributed normal with mean zero and variance (7].2.

Proposition 3. Let 77 = max; (7].2. If Assumption 1 holds, then

p(VT(8%) < (1= 50) 1 (xp(@) — ) (1 - o)

We can show that p(VT(6*)) < 1regardless of the distributional assumptions. So the bound

above is only informative when 8y > 1/2, as exp(?) > 1.

Random coefficient nested logit. By the same reasoning, the unbounded iteration for the

nested-logit variant of BLP in Grigolon and Verboven (2014) is globally convergent.

3 Conclusion

This paper establishes global convergence of the unbounded BLP fixed-point iteration to the
unique fixed point, closing the gap between BLP’s bounded contraction argument and the al-
gorithm used in practice. The result, together with the spectral-radius bounds that highlight the
role of the outside share, provides the correct theoretical baseline for comparing this inversion

method with competing alternatives, like the one of Li (2018).



APPENDIX

I begin with definitions and a few auxiliary lemmas (some standard; proofs included for
completeness). I then state a theorem of Bifulco et al. (2025) and reproduce its proof for con-
venience. Proposition 1 follows by verifying that the unbounded operator T(J) satisfies the

theorem’s conditions. The remaining propositions reduce to characterizing ||V T (6*)||co-

Proof of Proposition 1

Definition 1 (Lipschitz and non-expansive mappings). Let (X,d) be a metric space. A mapping
F : X — X is Lipschitz continuous with Lipschitz constant L > 0 if

d(F(x),F(y)) < Ld(x,y) foralx,ye X.

If L <1, we say F is non-expansive (with respect to d).

Definition 2 (Local asymptotic stability (Lyapunov)). Let (X, d) be a metric space and let x* € X
be a fixed point of F : X — X. We say x* is locally asymptotically stable if there exists a neighborhood

U of x* such that for any x° € U, the iterates x' 1 = F(x) satisfy x' — x* as t — oo,

Lemma 1 (Spectral radius condition for local stability). Let F : R/ — R/ be continuously differ-
entiable in a neighborhood of a fixed point x*, and suppose the spectral radius satisfies p(VF(x*)) < 1.

Then x* is locally asymptotically stable for the iteration x'+1 = F(x").

Proof. Fix e > 0sosmall that p(VF(x*)) + ¢ =: g < 1. By a standard result from matrix analysis
(see Lemma 5.6.10 of Horn and Johnson (2013)), there exists a vector norm || - ||, on R/ with

induced matrix norm || - ||« such that
IVE(x)[[« < p(VE(xT)) +e = q < L
By continuity of VF, thereis r > 0 and g’ < 1 with

sup |VEG)|| < ¢ < 1,

z€B, (x*,r)



where B, (x*,r) := {z : ||z — x*||x < r}. For any x,y € B.(x* r), the mean-value (integral)

formula gives
1
F)—F) = [ VHy+tx—y) (=),

whence

1
IE(x) = E(y)ll+ < /O IVE(y +t(x —y))ll«dt [x =yl < q'[lx =yl

Thus F is a contraction on B, (x*,7) (in the metric d«(x,y) = ||x — y||«). Since F(x*) = x*, for
any x € By (x*,1),
IF(x) = x[« < q'llx = x"[[« < q'r <7,

so F maps B.(x*,r) into itself. By Banach’s fixed-point theorem, the iterates x*1 = F(x!)

converge to x* for every x' € B..(x*,7). O

Remark 1 (Linearized stability). Lemma 1 is the discrete-time principle of linearized stability: if the
spectral radius of the Jacobian at a fixed point is < 1, then the fixed point is locally asymptotically stable.
See, e.g., Ortega and Rheinboldt (1970, Ch. 10).

Lemma 2 (Non-expansiveness of the unbounded operator). Let T(d) = J + log§ — log S(4;6)
and equip R) with the metric deo(X,y) = ||X — ¥||co- Then T is globally non-expansive:

ITS) —T(8)|w < |6—06"|lw  forall 5,8’

Moreover, with VT(8) := dT(8) /08, we have ||VT(J)||c < 1 forall §, and the bound is tight.

Proof. By the mean-value theorem it suffices to bound || VT (J)||c. Let 77;;(, p;) denote individ-

ual logit choice probabilities (conditional on y;). Then

Si(5;0) = /ﬂij(5rﬂi)dF(ﬂi;9)-

Differentiating under the integral gives

dlogS; /ﬂif(l{jzm}—mm)dF(m;e)

dd
" / 7 dF (pi; 0)
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Hence

dlogS; /7Tij Tim dF (ui; 0)

" /ﬂide(ﬂi;Q)

> 0.

For any fixed j,

/”1’]( Z]: ”1m> dF (pi; 0) /7Tij (1 — o) dF (p;; 0)

J
2 VTjn(5) =l = < 1,
m=1 /mde(,ui;G) /ﬂide(,ui,'Q)

since 0 < mp < 1. Therefore [|[VT(6)||c = max;},, VT, (6) < 1. Tightness follows along

sequences with ;o — 0. O

Remark 2. Because the global non-expansive bound in Lemma 2 is tight (i.e., it cannot be improved
to a uniform constant < 1 on R/), Berry et al. (1995) truncate the map and work on a compact set
= [4,5] € RJ. On K one has

sup |[VT(6)|le =c <1,
deK

so the truncated operator T : K — K is a contraction mapping and Banach’s theorem yields existence,

uniqueness, and convergence of the truncated iteration.

Lemma 3 (Spectral radius bounded by a matrix norm). Let || - || be any operator (induced) matrix

norm on RI*J. For any matrix A € R/*J,

p(A) < [|A].

Proof. Let A be any eigenvalue of A with (nonzero) eigenvector v. By definition of the induced

norm,
[Ax|| _ [lAv]] _ [[Av]]
|A]l' = sup > = = |Al
w20 X Il v
Taking the supremum over all eigenvalues yields p(A) < ||A]]. O

Lemma 4 (Local attractiveness at the fixed point). Let §* satisfy S(6*;0) = § with §y € (0,1) and
8> 0forall j > 1. Then p(VT(6*)) < 1.



Proof. By Lemma 2, for each j,

] /Tfij(l—ﬂio)dF(ﬂi;f?) /Tfij mio dF (p;; 0)

Y VT (6%) = =1- - < 1,
S-

m=1 /ﬂide(ﬂi;9) J

because 71;; > 0and 7y > Oa.s.imply [ 71719 dF > 0. Thus || VT (8*)||ec = max; Y, VTjy, (6*) <
1 and hence, by Lemma 3, p(VT(6*)) < [|[VT(6*) e < 1. O

Theorem 1 (Theorem C.1 from Bifulco et al. (2025)). Let (Z, d) be a metric space which is connected,
i.e., it cannot be written as the union of two non-empty open disjoint subsets. Let G : Z — Z be a
Lipschitz continuous function with Lipschitz constant 1, and let z* € Z be a fixed point of G which is
locally asymptotically stable.

Then z* is globally attractive, i.e., for each z € Z the sequence G"(z) converges to z* as n — oo. In

particular, z* is the only fixed point of G.

Proof. Let B denote the basin of attraction of the fixed point z*, i.e., the set of all z € Z for which
G"(z) — z* as n — oo. Note that B is non-empty since z* € B.

Step 1: B is open. Since z* is locally asymptotically stable, there exists 6 > 0 such that the
ball Bs(z*) C B. More generally, if zy € B, then G"(z9) — z*, so eventually G"(zg) gets arbi-
trarily close to z*. By local asymptotic stability around z*, points near G"(z() also converge to
z*. By continuity of G, points near zg will have their iterates near G"(zy), so they also converge.
Therefore B is open.

Step 2: B is closed. Let (zx)xen be a sequence in B that converges to some z € Z. We need
toshow z € B,ie., G"(z) — z*asn — .

Let & > 0 be arbitrary. Since z; — z, choose kg such that d(zy,,z) < &/2.

Since zi, € B, we have G" (zk,) — z" as n — oo. Therefore, there exists n such that for all
n > ng:

d(G"(zx,),z") < €/2



Now, using the Lipschitz continuity with constant 1, for n > n:

d(G"(2),2%) < d(G"(2), G"(2k,)) +d(G"(2xy),27)

<d
< d(z,zx,) +¢/2
<e/2+e/2=c¢

Since this holds for arbitrary ¢ > 0, we have G"(z) — z* asn — o0, s0z € B. Hence B is
closed.

Step 3: Connected space. Since Z is connected and B is both open and closed (and non-
empty), we must have B = Z. Therefore, z* is globally attractive.

Step 4: Uniqueness. If there were two fixed points z] and z3, then since B = Z, we would
have G"(z]) — z;. But G"(z}) = zj for all n, giving zj = z;. Therefore the fixed point is

unique. O

Proof of Proposition 1. By the argument given on the main text, BLP showed that there exists a
unique fixed point §*. By Lemma 2, T is non-expansive on (R/, d« ), and as explained in Remark
2, T(§) is not a contraction mapping on IR/. By Lemma 4 and Lemma 1, the unique fixed point
J* is locally asymptotically stable. Theorem 1 then gives global convergence of §/t1 = T(§?) to

J* from any starting value. O

Proofs of Propositions 2 and 3
Lemma 5 (Variance of f;j). Let f;; := 7,1/ S;(6;0). Then,
(i) Var(f;;) is nonincreasing in 5;.
(ii) Under Assumption 1, for all §; (in particular at the fixed point 5*),

2
Var(f;j) < S
50

Proof. LetS; := S;(6;0) = E|m;;] and recall f;; = m;;/S;.
J J ] ] 714
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(i) Var(f;;) is nonincreasing in ;. Since E[f;;] = 1, we have

Var(fy) = E[f2] -1, d%jvmfi» ELf) = 2E

£ f”] |

Using 87@]/85] = 7'(,']'(1 — 7'[1']') and aS]/85] = ]E[T[ij(l — 7'[1']')],

aﬁf_sﬂWU—WW)—ﬂﬂﬂﬂﬂl—ﬂﬁ]_7%<[ 2y g .>
a; s? B Ttijl = 9 TEj

Therefore

[fz] f”]—é(m[ 22— 5 El)).

Recall 77;; € [0, 1]. Then, by Cauchy-Schwarz inequality,

1E[7T12]]=]E[ 2/2 11]/2 \/lE l] \/]E[T(,]

% Var(f;;) < 0. Equality holds only if 7;; is constant, so the
j

inequality is strict in any nondegenerate case.

Then ]E[ ] < IE[Tf ]IE[nl]]

(it) Bound under Assumption 1. Write the “leave-j-out” sum S_;; := Yo eomtHim and Bjj =

s € (01].
We have:
eéjeyij eyij
14+S_j;+elithi 14+S_j;+elitti
v e ]eﬂzj E eﬂz]
. Oi+uij . Oi+uij
1+5_ i +eimri T+S_j,;+eimHi
Then
etii
1+S_;;
lim f = o
5]'—>—OO e‘uij
14+5,

11



Moreover, under Assumption 1 (independence across goods),

li e By X LY
5j§£‘@fz; - IE [e!i] .]E[Bz‘j]’ ij 1
::Xij ::Yij

Clearly E[X;;] = E[Y;j] = 1. Under Assumption 1, X;; depends only on ;; while Y;; depends
only on {tim fm+j, s0 Xjj L Yjj. Therefore

lim Var(fj;) = Var(X;;) + Var(Y;;) + Var(X;;) Var(Yj;).

5]'4)*00
If Hij ~ N(O, 0']2), then

2
[E[e?Hil] > o2
Var(Xij) = —IE[eVif]z —1= _a].z —1=e7 -1
e

Since 0 < B;j <1, Var(B;j) < E[B;;|(1 — E[B;j]), hence Var(Y;;) < 1/E[B;j] — 1. Combining,
2 2 0]2

. ? 1 ? 1 . e

tim Var(fy) < (¢7 1) + (g 1) + (7 =1) (e~ 1) = g7 ~ ©

(5]'%700

Finally, since pointwise B;j = 7t;9/ (1 — 71;7) > 7/, taking expectations gives [E[B;;] > E[m;g] =

so- Using part (i), for any J; (in particular at §*),

o
e’i el

Vi ) < I V. )< = -1 < — — 1.
ar(fl]) - (%vir{loo ar(fl]) - ]E[Bi]'] 5

Proof of Proposition 2. From Lemma 2, for each j,

I (1 — 7ti0) dF
})v%wﬂzf%(Am@
S .
m=1 ]
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Note that
J g0 E §_l']7-cio =59+ COV(fi]'/ ﬂiO)'
]

Thus for each j,
ZVT]m(5*) = (1 — §0) — COV(fi]', 7'(1'0).

m

Taking the maximum row sum,

IVT(5)||eo = m]aXZVT]-m(J*) <(1-8) — mjinCov(fl-j, TTi0)-
m

Finally, Lemma 3 gives
p(VT(5)) < V7)) < (1= S) — minCov(fy, m).

which is the desired bound. O

Proof of Proposition 3. Starting from Proposition 2 we get

p(VT(5")) < (1—%0) + max | Cov(fij, mtio)| < (1 —50) + max \/Var(ﬁ]-) Var(7tio)
Since 0 < 719 < 1 with mean $y, its variance is bounded by
Var(r(io) < §0(1 — §0).

It remains to bound Var(f;;). Using Lemma 5, Var(f;;) is maximized when §; — —co. Under
Assumption 1, p;; ~ N(O, (7].2) independently across j. Again, using Lemma 5 we get, on the
fixed point 6%,

exp(07) — 8o

Var(ﬁ]) S §0
Therefore
o(VT(5%)) < (1—8) + max \/(exp(ajz) —50)(1— ).
Letting 07 = max; 07 gives the stated bound. O
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