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In this Appendix we first provide details on how we construct the simulated labor markets that

we use to test and compare our bootstrap correction. Second, we explain how to estimate the

leverage of an observation in a linear regression model. This is useful when one uses covariance

matrix estimators that require the leverage, and when the direct computation of the leverage is

computationally costly. Third, we briefly explain how to choose the number of bootstraps based in

Chebyshev’s inequality. Fourth, we explain the algorithms used in the paper. Fifth, we compare our

method to Borovičková and Shimer (2017), both with simulated labor market data and the French

data. Sixth, we present a formal proposition that yields as a corollary that our bias correction is

more efficient than the one proposed by MacKinnon and Smith Jr (1998). Finally, we present tables

and figures that correspond to additional exercises that complement the analysis in the main text.

OA-1 Construction of Simulated Labor Market Data

We construct several simulated labor markets depending on the number of movers per firm, and

type of error term. Here, we briefly describe the construction of the simulated labor markets.1

We start by determining the size of the labor market. We have 5000 unique workers and 400

unique firms at the beginning of the sample. This gives an average firm size of 12 workers which

is similar to the average firm size in the data used by Kline, Saggio, and Sølvsten (2020).2 Their

connected set with an average of 2.7 movers per firm is similar to our low mobility simulations

with 3 movers per firm. The sample runs for 7 periods (years) but we allow that workers randomly

drop from the sample with a minimum of 2 observations per worker. This leads to a total sample

size of roughly 22,000 observations.

Worker and firm fixed effects are random draws from normal distributions. We assume that

there is sorting depending on the permanent types, which leads to non negative correlations be-

tween worker and firm fixed effects while fulfilling exogenous mobility. That is, a low type worker

is more likely to match with a low type firm if we assume positive sorting but sorting does not de-

pend on match specific shocks. This preserves the exclusion restriction necessary for OLS. Matches

are formed either at the beginning of the sample or afterwards for the movers. Errors are i.i.d.

and normally distributed in the baseline simulation with homoscedastic errors. When we use het-

eroscedastic errors, these are also normally distributed with an observation (worker-year) specific

variance that is randomly drawn from a uniform distribution. Finally, when we use serially cor-

related errors, these are simulated from a first order autoregressive process with persistence of 0.7
1We thank Simen Gaure for sharing with us a piece of code that we used as a base for the simulations.
2See Table 1 in Kline et al. (2020) where each worker is observed twice.
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and homoscedastic or heteroscedastic innovations. The simulated log wage is like equation (7) in

the main text with only the firm and worker fixed effects

wit = θi + ψJ(i,t) + εit. (OA-1)

OA-2 Leverage Estimation

The direct computation of the leverage, by using the diagonal of the projection matrix H ≡
X (X′X)−1 X′, is computationally infeasible when the number of covariates is large. Again, the

problem is the computation of (X′X)−1.

Here we follow a way to estimate the leverage first proposed by Kline, Saggio, and Sølvsten

(2021).3 This procedure is very similar to our bias estimator. We simulate repeatedly random

variables and use the fitted values of the projection into X to estimate the leverage. The procedure

starts by generating the endogenous variable ω where each entry is i.i.d. with (conditional) mean

equal to zero and (conditional) variance equal to 1. Projecting it into X, we have that the expectation

of the squared of the fitted value ω̂ is

E
(

ω̂2
i |X
)
= xi

(
X′X

)−1 X′E
(
ωω′|X

)
X
(
X′X

)−1 x′i = xi
(
X′X

)−1 x′i = hii,

where x′i is the ith row of matrix of covariates X. Let nh be the number of simulations for the vector

ω used to estimate the leverages ĥii. Similarly to what we do to estimate the bias correction, we

simulate different vectors of the dependent variable ω, compute the fitted values for each simulation

j and then take a sample mean across all the simulations j = {1, ..., nh} of ω.

Additionally, and following Kline et al. (2021), we can also estimate a value for one minus the

leverage, mii = 1− hii by averaging the squared residuals of the same regressions we run above. So

the ith residual is equal to ωi − ω̂i. Then, defining 1i as a vector of zeros except for the ith entry

which is equal to one we have that

E
(
(ωi − ω̂i)

2 |X
)
= E

(
ω2

i − 2ω̂iωi + ω̂2
i |X
)

= E
(

ω2
i |X
)
− 2xi

(
X′X

)−1 X′E (ωωi|X) + E
(

ω̂2
i |X
)

= 1 − 2xi
(
X′X

)−1 X′1i + hii

= 1 − 2hii + hii

= 1 − hii.

So we can take also a sample mean of the squared residuals to get an estimate for mii. Let

us define the estimated values with their corresponding hat variables, ĥii, m̂ii. Thus, we have

two estimates for the one minus the leverage, 1 − ĥii and m̂ii. As Kline et al. (2021) mention, the

infeasible variance minimizing unbiased linear combination of both estimators is

hii
mii + hii

m̂ii +
mii

mii + hii

(
1 − ĥii

)
.

3The reference for Kline et al. (2021) which contains the details on the derivations of the leverage estimator can be found here.
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The feasible estimator of mii would then be equal to

m̄ii ≡
m̂ii

m̂ii + ĥii
,

and h̄ii ≡ 1 − m̄ii. We then use m̄ii to construct the covariance matrix estimate when using HC2.

We do this by multiplying 1/m̄ii to the squared residual of observation i. We also correct for a bias

coming from the non-linear estimation of 1/m̄ii up to a second order. The expected value of the

second-order approximation of 1/mii is

E

(
1

m̄ii

)
≈ 1

mii
+

hii

m3
ii

E (m̂ii − mii)
2 − 1

m2
ii

(
E
(
(ĥii − hii)(m̂ii − mii)

))
.

Thus, the final estimate of 1/mii would be

1
m̄ii

(
1 − h̄ii

m̄2
ii

v̂ar(m̂ii) +
1

m̄ii
ĉov

(
ĥii, m̂ii

))
,

where v̂ar and ĉov are sample variance and covariance estimates.4

Direct computation. Alternatively, an exact computation of the leverage is possible by using the

definition of fitted values Ŷ = HY and a regression-intensive procedure. We have that the leverage

of observation i is equal to

hii =
∂ŷi
∂yi

.

The following remark shows how to compute these leverages without computing the projection

matrix H using only linear regressions.

Proposition OA-1. Let Ỹ(i) be a vector of length n where every entry is equal to zero, except the ith entry

that is equal to one. The leverage of observation i is equal to the fitted value ŷi of a linear regression of Ỹ(i)

on X.

Proof. Let hi be the ith row of the projection matrix H. Then, for any vector Y we have that the ith

fitted value ŷi is equal to ŷi = hiY = ∑j hijyj. Let Y = Ỹ(i). Then ŷi = hii.

Recovering the estimates of a linear regression is very efficient nowadays and in principle we

could compute the leverages one by one in what would involve n regressions. When the data set

is large, this is clearly not plausible and we leave the exact computation for the problematic cases

identified by the following diagnostic.

Diagnostic and adjustment. Although, as mentioned by Kline et al. (2021), the above estimate of mii

rules out nonsensical estimates outside the [0, 1] interval, the estimates for 1/mii, could still violate

some theoretical bounds. We detect problematic estimations of 1/mii by checking that they are

within some bounds that are consistent with the theoretical bounds for the leverages hii ∈ [1/n, 1].

4The sample variance of m̂ii is 1
nh−1

(
1

nh
∑

nh
j=1

(
ωi,j − ω̂i,j

)2 − m̂2
ii

)
. The sample covariance is 1

nh−1

(
1

nh
∑

nh
j=1

(
ωi,j − ω̂i,j

)2
ω̂2

i,j − m̂ii ĥii

)
.
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These bounds are derived from the following proposition, which might be well known for some

readers.

Proposition OA-2. Let X be a full rank matrix of dimensions n × k, where a vector of ones can be obtained

through column operations. Let H = X (X′X)−1 X′, with ith diagonal element hii. Then 1/n ≤ hii ≤ 1 for

all i.

Proof. As H is idempotent then hii = h2
ii + ∑j ̸=i h2

ij. Then hii ≤ h2
ii =⇒ hii ≤ 1.

Now, let X̃ be the full rank matrix of dimensions n × k that contains a vector of ones after doing

column operations on X. Then define H̃ = X̃
(
X̃′X̃

)−1 X̃′ with diagonal elements h̃ii. It is well

known that 1/n ≤ h̃ii (see for example Lemma 2.2 in Mohammadi (2016)). As X and X̃ have the

same column space, then H = H̃. Thus, 1/n ≤ hii.

The corollary of the proposition above is that 1/mii ≥ n/(n− 1). Thus, we check if our estimates

of 1/mii satisfy this bound.5 We directly compute leverages corresponding to the estimates of 1/mii

that fall outside those bounds by using the result of Remark OA-1.

Algorithm 4 in Section OA-4 of this Online Appendix takes as inputs the covariates X and gives

output a combination of actual and estimates for 1/mii.

Leave-one-out connected set. Two-way fixed effect models are only identified within a connected

set. In typical applications on the labor market or teacher evaluations, firm (school) fixed effects are

only identified within the connected set that is generated by moving workers (teachers). Movers

therefore determine the connected set of firms (schools) whose fixed effect can be identified. When

the estimator of a the covariance matrix requires to compute 1/(1 − hii), as is the case with the

HC2 estimator, then we need to have hii < 1 for all i. In practice a leverage hii equal to 1 usually

means that one single observation identifies a particular fixed effect. For example, when one firm

has only one mover, then that worker is key to identify the firm fixed effect and will have a leverage

of 1. The leave-one-out connected set requires that no single observation is necessary to estimate

a particular fixed effect. That is, after eliminating any observation the set of fixed effects in the

connected set needs to remain the same. We achieve this by first pruning the data to get the leave-

one-out connected set without critical movers identifying a given firm fixed effect, and eliminating

unique observations. The pruning is the same as the one used by Kline et al. (2020). Algorithm 3

in Section OA-4 describes the details.

OA-3 Choosing the number of bootstraps

Some readers might feel uneasy with the arbitrary number of bootstraps necessary to correct the

bias. To choose the number of bootstraps in the main application we first simulated a "similar"

labor market and check how many bootstraps were necessary for a significant reduction of the

mean squared error. However, this is still an arbitrary procedure and might not be a very efficient

way to do for every application. In this section we show a way to discipline the choice of the number
5When we use any estimate of the covariance matrix that requires calculating 1/(1 − hii), we prune the data such that observations

with hii = 1 are not in the sample.
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of bootstraps. We exploit the fact that our estimator δ∗ is a sample mean estimate of the direct bias

correction term δ̂. This allows us to exploit the information given by Chebyshev’s inequality.

Let δ∗j ≡ β∗′
j Aβ∗

j be the quadratic form for bootstrap j. In the proof for Proposition 2 we show

that Ev∗
(

δ∗j |X, u
)
= δ̂. Now assume that V(δ∗j |X, u) = η2 < ∞. As δ∗ is a sample mean over a

sequence of {δ̂∗j }
p
j=1, we have that Ev∗(δ̂

∗|X, u) = δ̂ (as shown in the proof of Proposition 2) and

V(δ∗|X, u) = 1
p η2.6 Then, by Chebyshev’s inequality we have

P
(∣∣∣δ̂∗ − δ̂

∣∣∣ ≥ k
η
√

p

∣∣∣∣ X, u
)
≤ 1

k2 .

Next one can choose the number of bootstraps p such that the distance between the bootstrap

estimate δ̂∗ and the direct bias correction term δ̂ is greater or equal than λ standard deviations with

probability smaller than α. So, for arbitrary α > 0 and λ > 0 we have

1
k2 = α,

k
√

p
= λ.

Solving for p we get p = 1
αλ2 . So if, for example, we set α = 0.05 and λ = 1/2 we get that the

number of bootstraps such that the distance between the bootstrap estimate and the unfeasible

correction term is greater than half a standard deviation is an event with a probability smaller than

5 percent is p = 1
0.05×(1/2)2 = 20 × 4 = 80. One could be more conservative and set λ = 0.1. In that

case, we would obtain p = 20 × 1000 = 2000 bootstraps.

Admittedly, the number of bootstraps suggested by inequality for any α and λ can be quite

conservative. But this just reflects the generality of the result. Indeed, this criteria would work

regardless the distribution of v∗, therefore regardless the choice of bootstrap.

OA-4 Algorithms

In this Section we detail the implementation algorithms of our method. Algorithm 1 and 2 describe,

respectively, the estimation of the bias correction for diagonal and non diagonal covariance matrices.

Algorithm 3 describes how to prune the data to ensure that the maximum leverage is below 1 and

Algorithm 4 details how to estimate the leverage.

Notation. For a number of moments to correct M (for example a variance decomposition of a two-

way fixed effect model has at least three corrections: the two variances of the fixed effects and their

covariance), the bias correction of the mth moment m ∈ {1, ..., M} is denoted as δ̂∗m.

6We have that V(δ∗|X, u) =
1
p2 V(∑

p
j δ̂∗j |X, u) =

1
p2 ∑

p
j V(δ̂∗j |X, u) =

1
p

η2 where we used the independence of different δ̂∗j conditional

on X and u.
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Algorithm 1 Estimate {δ̂∗m}M
m=1 when the covariance matrix is diagonal

1: for j = 1, ..., p do
2: Simulate a vector r∗ of length n of mutually independent Rademacher entries.

3: Generate a vector of residuals v∗ of length n whose ith entry is equal to
√

ψ̂i × r∗i .
4: Compute β∗ as the estimate of a regression of v∗ on X.
5: Compute δ̂

(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

6: end for

7: Compute δ̂∗m =
∑

p
j=1 δ̂

(j)
aux,m

p
for all m ∈ {1, ..., M}.

Algorithm 2 Estimate {δ̂∗m}M
m=1 when covariance matrix is non diagonal

1: Let G = {1, ..., G} be the set of groups g each with length ng.
2: for j = 1, ..., p do
3: Simulate a vector r∗g of length G of mutually independent Rademacher entries. All the observations

withing the group will have the same Rademacher entry.

4: Generate a vector of residuals v∗ of length n whose ith entry belonging to group g is equal to
√

ψ̂i × r∗g.
5: Compute β∗ as the estimate of a regression of v∗ on X.
6: Compute δ̂

(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

7: end for

8: Compute δ̂∗m =
∑

p
j=1 δ̂

(j)
aux,m

p
for all m ∈ {1, ..., M}.

Algorithm 3 Leave-one-out connected set

1: Let Λ be the connected set.
2: a = 1.
3: while a > 0 do
4: Compute the articulation points a.
5: Eliminate articulation points a.
6: Compute the new connected set Λ1.
7: end while
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Algorithm 4 Estimate leverages, diagnosis and compute those out of bounds

1: z(0)h = 0, z(0)m = 0, z(0)2 = 0, and z(0)hm = 0 are vectors of length n.
2: for j = 1, ..., p do
3: Simulate a vector ω∗ of length n of mutually independent Rademacher entries.
4: Compute fitted values ω̂∗ from a regression of ω∗ on X.

5: Compute z(j)
h = z(j−1)

h +
(

ω̂∗
)2

and z(j)
m = z(j−1)

m +
(

ω̂∗ − ω∗
)2

.

6: Compute z(j)
2 = z(j−1)

2 +
(

ω̂∗ − ω∗
)4

and z(j)
hm = z(j−1)

hm +
(

ω̂∗ − ω∗
)2 (

ω̂∗
)2

7: end for
8: Compute ĥii = z(p)

h,i /p and m̂ii = z(p)
m,i /p for all i ∈ {1, ..., n}.

9: Compute v̂ar(m̂ii) =
1

p−1

(
z(p)

m,i
p − m̂2

ii

)
for all i ∈ {1, ..., n}.

10: Compute ĉov(ĥii, m̂ii) =
1

p−1

(
z(p)

hm,i
p − ĥiim̂ii

)
for all i ∈ {1, ..., n}.

11: Compute m̄ii =
m̂ii

m̂ii+ĥii
for all i ∈ {1, ..., n}.

12: for i = 1, ..., n do

13: if 1
m̄ii

(
1 − h̄ii

m̄2
ii

v̂ar(m̂ii) +
1

m̄ii
ĉov

(
ĥii, m̂ii

))
≤ n

n−1 then

14: Generate Ỹ(i) ∈ Rn, where Ỹ(i)j ̸=i = 0, Ỹ(i)i = 1.

15: Compute the fitted values ̂̃Y(i) of a regression of Ỹ(i) on X.
16: Get actual leverage hii =

̂̃Y(i)i.
17: Get actual 1/mii = 1/(1 − hii).
18: end if
19: end for

OA-5 Comparison with Borovičková and Shimer (2017)

Borovičková and Shimer (2017) (henceforth BS) provide an alternative method to compute the

correlation of firm types and workers, which has the advantage of not requiring estimates of all

the worker and firm fixed effects and directly computing the correlation. Their method completely

bypasses the need to estimate a linear model and therefore avoids using noisy estimates—which

are the source of the bias—to compute the correlation.

As explained by BS, the worker and firm types that they define are different to the types defined

in the AKM model. In BS, a worker’s type, denoted λi, is defined to be the expected log wage of

the worker, while a firm’s type, denoted µJ(i,t), is defined to be the expected log wage that a firm

pays. In contrast, in the AKM model, a worker and firm types (θi, ψJ(i,t)) are defined as such that a

change in type will change the expected log wage while holding fixed the partner’s type.7

BS show that their correlation and the AKM correlation, ρ, will be the same if the joint distribu-

tion of θ and ψ is elliptical (e.g. a bivariate normal) and (σλ − ρσµ)(σµ − ρσλ) > 0, where σλ and σµ

are, respectively, the standard deviations of worker and firm types. With these assumptions, there

is also a direct correspondance between the standard deviation of AKM types and BS types:8

σθ =
σλ − ρσµ

1 − ρ2 , σψ =
σµ − ρσλ

1 − ρ2 .

7We refer to an old version of the Borovičková and Shimer from 2017 where they provide a way to translate the variances and
covariances of their worker and firm types to the ones in AKM. In the latest version, they slightly changed their estimator and no longer
provide this link.

8See Proposition 1 in Borovičková and Shimer (2017).
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Table OA-1: Monte Carlo simulations. Homoscedastic errors.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 6.637 0.341 0.114 2.364
BS 0.1 1.580 0.615 0.040 0.745
Gaure 17.3 0.050 0.109 0.015 0.058
Boot 0.9 0.050 0.105 0.014 0.057
KSS 1.3 0.050 0.106 0.014 0.057
Notes: Plug-in is the naive plug-in estimator, BS refers to Borovičková and Shimer (2017), Gaure refers to the method Gaure (2014) imple-
mented through the R package lfe, Boot is our method with HC2 covariance matrix estimator, and KSS is the Kline et al. (2020) method. The
results of Borovičková and Shimer correspond to the AKM worker and firm types present in the cited version of the paper. The average
firm has 10 movers and 12 employees. Time is the computing time in seconds. True moments are computed at the final sample for each
method, i.e. largest connected set for Gaure and the largest leave-one-out connected set for Boot and KSS. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respec-

tively the mean squared errors (MSE) of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects
and the covariance between worker and firm effects. All the MSE are multiplied by 100. Average is the average MSE (also scaled).

The key identifying assumption in the BS method is that for each worker and firm they have two

or more observations of the wage which are independent and identically distributed conditional on

the types. In AKM, the identifying assumption is a standard exclusion restriction, i.e. that the error

term is mean zero conditional on the types (and other covariates) with the underlying assumption

of exogenous mobility.

OA-5.1 Comparison of Methods

We perform two exercises to compare our method with BS. First, we simulate labor market data

that fulfills the key identifying assumptions of the AKM linear model and of BS. We find that both

methods correct the bias but ours outperforms theirs in terms of accuracy of the estimation of

each of the elements of the correlation, but is naturally more time consuming. Second, we apply

BS method to the French data which requires some changes to the original dataset in the sample

selection, which we explain in more detail below.

The results of the comparison using simulated data are in Table OA-1. For completeness we

also include Gaure and KSS’s methods in the comparison. The table shows that the least accurate

method is BS reducing by 56% the MSE of the naive estimates whereas the other three methods

reduce it by 98%.9 The objective of BS is to provide an estimate of the correlation but they base their

estimation in different worker and firm types (λ and µ respectively). Table 2 presents their estimates

of the corresponding AKM moments. Figure OA-1 shows the distribution of the difference of

the firm variances for the plug-in estimate and the true variance (σ̂2
ψ,PI − σ2

ψ), as well as the the

distributions of the differences using the different correction methods. The figure shows that our

method is very similar to KSS and both are the ones with lowest biases. Even if the bias of Gaure is

higher, his method has lower variance and outperforms KSS and ours in terms of MSE. Regarding

the computation time, BS is the fastest one with computation time of less than a second. Our

method is the one performing the fastest among the AKM based competitors (Gaure, KSS and our

method).10

9We wrote the code for BS following Borovičková and Shimer (2017) and converting the data to the match level.
10KSS and our method do not incorporate the simplifications that come from having homoscedastic errors. In particular, under

homoscedasticity of the errors, one could gain speed by using the covariance estimate HC1 which is unbiased, and therefore skip the
pruning of the data and the leverage estimation.
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Figure OA-1: Model Comparison: Homoscedastic Errors.

Notes: This figure presents the distributions of the bias of σ̂2
ψ for the naive plug-in estimate and the corrected moments for the different

methods. Simulated errors are homoscedastic and labor mobility is high.

Table OA-2: Application. Extended Comparison of the Methods (BS Data).

BS Plug-in Boot HC1 Boot HC2 KSS

σ̂2
θ 0.061 0.095 0.063 0.063 0.062

σ̂2
ψ 0.005 0.038 0.020 0.019 0.019

σ̂θ,ψ 0.010 -0.004 0.005 0.005 0.006
ρ̂θ,ψ 0.558 -0.064 0.131 0.157 0.161
Obs. 945356 942235 942235 931925 931925

Notes: The results of BS correspond to the AKM worker and firm types of Borovičková and Shimer. Plug-in are the plug-in estimates
at the connected set originated from BS data, Boot HC1 are the results of our method under diagonal covariance matrix estimator HC1
at the connected set originated in the BS data, Boot HC2 are the results of our method under diagonal covariance matrix estimator HC2
at the leave-one-out connected set in the BS data and KSS are the results corrected with the method of Kline et al. at the same sample
as for Boot HC2. σ̂2

θ and σ̂2
ψ are respectively the estimates of the variance of worker and firm fixed effects. σ̂ψ,θ is the covariance, ρ̂ψ,θ the

correlation between worker and firm fixed effects and Obs. is the number of observations.

Now, we compare BS method using the French data with our method as well as with KSS’s

method. In order to do so, we need to deviate in two aspects from the original sample used in our

main application: first, we need to restrict the sample to workers that have at least two jobs and

firms that have at least two workers; second, we need to take averages of every match between firm

and workers.11 The first restriction implies that the sample used for BS is about half of the original

sample of private firms.12 Suggestive of the potential sample selection issues is that the plug-in

estimate of the correlation between worker and firm fixed effects is -0.10 under the original data

whereas is -0.06 under the connected set generated from BS data.

In order to accommodate for the extra covariates within the BS method, we first run a linear

regression of log wage versus qit (age and education interacted by year effects) and take the residual.

We use the averaged match-level residual wage as the dependent variable to compute the moments,

both for the BS and our bootstrap method. We estimate the bootstrap corrected moments at the

connected set or leave-one-out-corrected set of the BS final sample.

Table OA-2 compares the estimated moments using the BS method and the bootstrap correction
11More precisely this would mean that if we observe one worker employed for a certain firms for several years, we would take the

average wage of that worker in that firm as one observation.
12The original data of private firms has 5.8 million observations while after filtering of two job and worker restrictions the sample has

only 2.5 million observations.
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Table OA-3: Application. Summary Statistics.

BS Data Obs. Mean Wage Mean Age Mean Education

No 3311804 4.39 41.43 4.56
Yes 2541773 4.37 36.94 4.95

Notes: BS Data is an indicator if the observation belongs to the final sample of Borovičková and Shimer (2017), Obs. is the number of
observations before taking match level averages in the original data and before computing the connected set, Mean Wage is the average
log daily wage, Mean Age is the average age in years and Mean Education is the average education where education is a discrete variable
between 1 (no education) and 8 (university degree).

method on French data. Both columns report the moments using the AKM defined worker and firm

types. In contrast to the Monte Carlo simulations that satisfied the assumptions for both methods,

estimates differ by a large amount when using French labor market data. The bootstrap corrected

estimated correlation is 0.16 (0.09) under HC2 (HC1) covariance matrix estimation, well below the

estimated one using BS method, 0.56.13 Looking at each of the components of the correlation,

both variances are larger and the covariance is smaller when using the bootstrap corrected method

instead of BS method.

There are different reasons why BS estimates might differ from ours. To begin with, the types

defined by BS are fundamentally different from the ones defined in the AKM model. They are

related only when the assumptions stated at the beginning of this section are satisfied. It might be

that the two correlations are not comparable because, even if the log-linear AKM model is correctly

specified, these assumptions are violated, in particular, if the joint distribution of AKM types is not

elliptical. Second, it might be that the identification assumption of at least one of the methods fail.

It is easy to think of examples where both identification assumptions are violated. For example,

whenever there is selection of workers via the error term, some matches will be formed whenever

this idiosyncratic component is high. This endogenous mobility would violate both the AKM and

BS identification assumptions.

Results in Table OA-2 under our method also differ from the ones previously reported in Table 5

in the main text. Table OA-3 presents some summary statistics of the original data differentiated by

being in the final BS data or not.14 The Table shows that the requirements to use the Borovičková

and Shimer (2017) method are more demanding as only 77% of the original observations are in-

cluded in their final sample. Furthermore, Table OA-3 shows that their data requirements lead

to a sample with similar average wage but almost 5 years younger on average and slightly more

educated. The applied user might be worried by sample selection when using the BS method to

estimate worker and firm correlation as Lentz, Piyapromdee, and Robin (2018) document that most

of the worker-firm sorting happens early in the career which would lead to higher correlations for

younger workers.

OA-6 Additional Results and Proofs

The following proposition gives conditions under where our bootstrap estimate is more efficient

than the one proposed by MacKinnon and Smith Jr (1998) (MS). The proposition proofs that a
13The BS estimates are obtained by using the formulas of Section 5.2. in Borovičková and Shimer (2017).
14The original data constitutes of almost 5.9 million observations that translate into a connected set of 5.1 million observations as in

Table 5.
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covariance is zero. When that is the case, the variance of the bias correction of MS is strictly larger

than the one from our bias correction as shown by equation 6 in the main text.

Proposition OA-3. Let X and u be the exogenous covariates and the error term in the original model. Let v∗i
be the bootstrap residual for observation i. These are independent across observations with E

(
v∗i
∣∣ X, u

)
=

0, E
(
(v∗i )

2
∣∣ X, u

)
= ψi, and E

(
(v∗i )

3
∣∣ X, u

)
= 0. Let Q = (X′X)−1 X′ and A independent of v∗,

conditional on X and u. Then,

cov
(
(v∗j )

′Q′AQv∗j , 2v∗′j Q′Aβ̂|X, u
)
= 0.

Proof. Let the matrix Q′AQ ≡ R, with elements (i, j) equal to ri,j. Also, let the vector Q′Aβ̂ ≡ S

with element k equal to sk. Then,

cov
(
(v∗j )

′Q′AQv∗j , 2v∗′j Q′Aβ̂|X, u
)
= E

((
n

∑
i=1

n

∑
j=1

ri,jv∗i v∗j

)(
n

∑
k=1

skv∗k

) ∣∣∣∣∣ X, u

)
,

where we use the fact that E
(
v∗i
∣∣ X, u

)
= 0. Then,

E

((
n

∑
i=1

n

∑
j=1

ri,jv∗i v∗j

)(
n

∑
k=1

skv∗k

) ∣∣∣∣∣ X, u

)
=

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ri,jskE
(

v∗i v∗j v∗k
∣∣∣ X, u

))
= 0,

where we use that the bootstrap errors are independent across observations and the fact that

E
(
(v∗i )

3
∣∣ X, u

)
= 0.

OA-7 Additional Tables and Figures

Table OA-4 does the same exercise as the Low Mobility part of Table 3 in the main text in a more

realistic sample size of roughly 5 million observations. Table OA-5 compares the MSE for the

different moments when using different assumptions on the covariance matrix estimators applicable

with our bootstrap method. The original error terms in the simulation were heteroscedastic. As

expected, all the corrections effectively reduce the MSE compared to the baseline regardless of the

covariance matrix estimator. However, HC2 outperforms the rest.

Table OA-6 present the Monte Carlo simulation results for serially correlated error terms when

the true innovation is heteroscedastic. Figures OA-2 and OA-3 show the distribution of the correc-

tions in Monte Carlo simulations when the error terms are respectively heteroscedastic and when

they are serially correlated. Table OA-7 compares the bootstrap correction to the KSS correction in

the French application.
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Figure OA-2: Model Comparison: Heteroscedastic Errors.

(a) Bias of σ̂2
θ (b) Bias of σ̂2

ψ

(c) Bias of σ̂θ,ψ

Notes: These figures present the distributions of the bias for the naive plug-in estimate and the bias of corrected moments for KSS and
our method. Simulated errors are heteroscedastic and labor mobility is low.

Figure OA-3: Model Comparison: Serial Correlation with heteroscedasticity.

Notes: This figure presents the distributions of the bias of σ̂2
ψ for the naive plug-in estimate and the corrected moments for the different

methods. Simulated errors have serial correlation, true innovations are heteroscedastic and labor mobility is high.
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Table OA-4: Monte Carlo simulations with a larger sample. Heteroscedastic errors.

Mean Squared Error (MSE×103)

Model Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 203.136 60.374 52.419 105.310
Boot 418.1 0.001 0.000 0.001 0.001
KSS 726.1 0.003 0.000 0.002 0.002
Notes: We simulate a labor market with a connected set similar to the one we use in the application with more than 5 million observa-
tions. Plug-in is the naive plug-in estimator, Boot refers to our method with HC2 covariance matrix estimator, and KSS is the Kline et al.
(2020) method. True moments are computed at the leave-one-out connected set. In all the exercises the number of movers per firm is 3
and the average firm has 12 employees. Time is the computing time in seconds. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared

errors of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the covariance be-
tween worker and firm effects. All the MSE are multiplied by 1000 due to high accuracy of the corrections. Average is the average MSE
(also scaled).

Table OA-5: Comparison of variance estimators. Heteroscedastic errors

Mean Squared Error (MSE×102)

Model σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 25.199 2.922 9.674 12.598
Boot HC0 3.399 0.740 2.335 2.158
Boot HC1 0.800 1.301 1.103 1.068
Boot HC2 0.220 0.679 0.210 0.370
Notes: The original errors in the simulation exhibit heteroscedastic errors. Plug-in is the naive plug-in estimator, Boot
refers to our method. True moments are computed at the largest leave-one-out connected set to make results comparable.
Model is the model and type of variance estimator. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors of the

estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the covariance between worker
and firm effects. All the MSE are multiplied by 100. Average is the average MSE (also scaled). Simulated data exhibits low
mobility like in the top panel of Table 3 and all the estimations are done using the leave-one-out sample.

Table OA-6: Monte Carlo simulations. Serial correlation with heteroscedasticity.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 88.915 1.510 0.234 30.220
Boot 0.3 0.583 0.284 0.030 0.299
KSS 1.3 21.351 0.251 0.045 7.216
Notes: Plug-in is the naive plug-in estimator, Boot refers to our method with a wild block bootstrap where each match defines a
block and we skip the pruning of the data. KSS is the Kline et al. (2020) method leaving a match out. The average firm has 10
movers and 12 employees. Time is the computing time in seconds. True moments are computed at the largest connected set for
Boot and at the largest leave-one-out connected set for KSS. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors (MSE)

multiplied by 100 of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the
covariance between worker and firm effects. Average is the average MSE (also scaled).

Table OA-7: Application. Comparison of the Methods (KSS Data).

Plug-in Boot HC2 Boot Serial (Connected) Boot Serial KSS KSS Serial

σ̂2
θ 0.156 0.142 0.130 0.143 0.153 0.140

σ̂2
ψ 0.029 0.020 0.036 0.014 0.016 0.008

σ̂θ,ψ 0.000 0.007 -0.002 0.007 0.006 0.011
ρ̂θ,ψ 0.000 0.137 -0.032 0.153 0.112 0.327
Obs. 2951415 2951415 5108399 2951415 2951415 2951415
Time (min) 4.86 16.38 4.61 16.34 16.34

Notes: Plug-in are the plug-in estimates at the leave-one-out connected set, Boot HC2 are the results of our method under diagonal co-
variance matrix estimator HC2 at the leave-one-out connected set, Boot Serial (Connected) are the results using a Wild block bootstrap at
the connected set, Boot Serial are the results using a Wild block bootstrap at the leave-one-out connected set like KSS, KSS are the results
corrected with Kline et al. at the leave-one-out connected set similarly to Boot HC2 and KSS Serial are the results at the leave-one-out con-
nected set when leaving a match out. σ̂2

θ and σ̂2
ψ are respectively the estimates of the variance of worker and firm fixed effects. σ̂ψ,θ is the

covariance, ρ̂ψ,θ the correlation between worker and firm fixed effects, Obs. is the number of observations and Time (min) is the correction
time in minutes.
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